DILLON CONSULTING

October 29, 2018

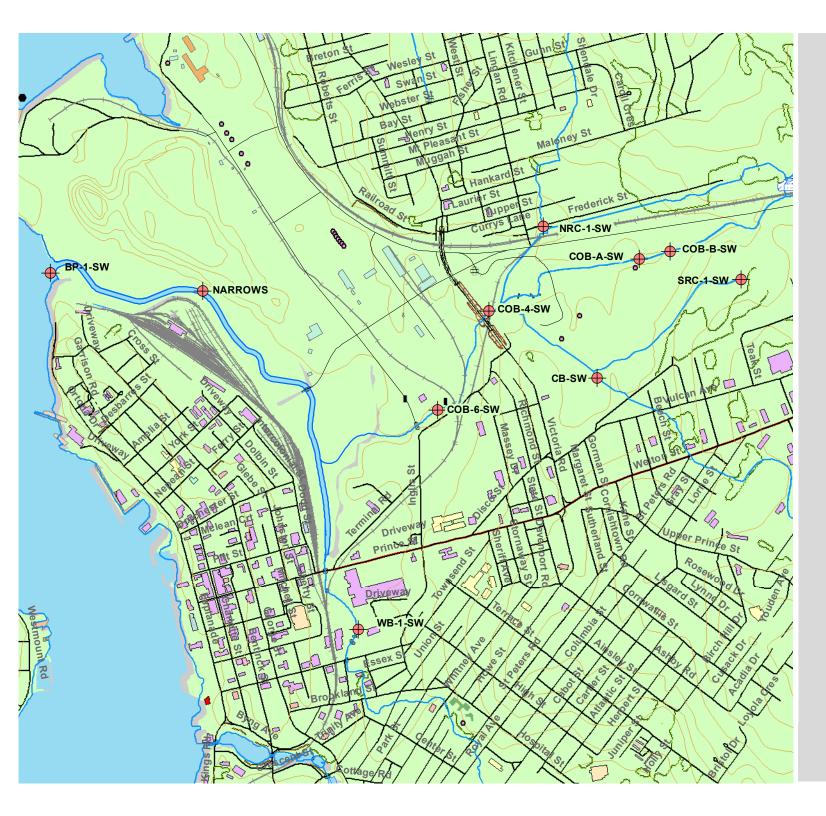
Nova Scotia Lands 45 Wabana Court Harbourside Commercial Park Sydney, Nova Scotia B1P 6H2

ATTENTION: Mr. Frank Potter Executive Director

Long Term Maintenance and Monitoring Semi-Annual Surface Water Quality Monitoring Program - July 2018 Final Report

Following completion of the Sydney Tar Ponds and Coke Ovens Remediation Project, surface water quality monitoring was implemented as part of the long term maintenance and monitoring (LTMM) program to provide ongoing data and compliance commitments to regulatory agencies and/or stakeholders. Nova Scotia Lands (NS Lands) is a Crown Corporation of the Province of Nova Scotia responsible for the LTMM semi-annual surface water quality program. NS Lands retained Dillon Consulting Limited (Dillon) to conduct the July 2018 LTMM Surface Water Quality Monitoring Program, the details of which are provided herein.

PROJECT METHODOLOGY


The summer surface water quality monitoring program, which was completed on July 25, 2018, was scheduled to consist of the collection of surface water samples at ten stations (i.e., CB-SW, NRC-1-SW, SRC-1-SW, COB-A-SW, COB-B-SW, COB-4-SW, COB-6-SW, WB-1-SW, Narrows and BP-1-SW) (see Figure 1). A GPS unit was used to confirm that the monitoring locations sampled as part of the LTMM surface water quality monitoring program were the same as those used during historical surface water monitoring events (i.e., the Environmental Effects Monitoring and Surface Water Monitoring (EEMSWM) Program associated with the Sydney Tar Ponds remediation and past LTMM program events). Tasks associated with the July 2018 surface water monitoring included:

- · Documenting ecological activity in the surface water bodies, if observed;
- Recording of physical conditions and potential contaminants (i.e., debris, precipitate);
- Measurement of field parameters (e.g., pH, conductivity, temperature, salinity and turbidity);
- · Flow calculation; and,
- Collection of surface water samples for polycyclic aromatic hydrocarbons (PAHs), general chemistry and total metals (including mercury) (RCApMS) analysis. As concentrations of petroleum hydrocarbons (PHC) and polychlorinated biphenyls (PCBs) had remained below laboratory detection limits, the surface water program was modified in July 2016 to consist of PAH and RCApMS analysis only (following approval from Nova Scotia Environment (NSE) and NS Lands).

275 Charlotte Street Sydney Nova Scotia Canada B1P 1C6

Telephone (902) 562-9880 Fax

(902) 562-9890

LONG TERM MAINTENANCE AND MONITORING SURFACE WATER QUALITY MONITORING PROGRAM July 2018

SURFACE WATER LOCATIONS FIGURE 1

LEGEND

Surface Water Locations

MAP DRAWING INFORMATION: Province of Nova Scotia Mapping

MAP CREATED BY: SCM MAP CHECKED BY: NJW MAP PROJECTION: NAD 1983 UTM Zone 20N

FILE LOCATION: \\DILLON.CA\DILLON_DFS\SYDNEY \SYDNEYCAD\GIS\141360

PROJECT: 14-1360

Date: 2018-09-27

A summary of the surface water stations included in the July 2018 monitoring program is presented in Table 1.

	Table 1 – Surface Wate	r Quality Monitoring Stations
Monitoring Station ID	Water Body	Rationale for Sampling
CB-SW	Cagney Brook	To characterize surface water quality within the urban area of Sydney upstream of CO7/CO8 ¹ .
NRC-1-SW	North Realigned Channel	To characterize surface water quality within the urban area of Whitney Pier upstream of CO7/CO8.
SRC-1-SW	South Realigned Channel	To characterize surface water quality related to runoff from the municipal landfill upstream of CO7/CO8.
COB-A-SW	Coke Ovens Brook - concrete riffles upstream of Stable Drive	To characterize surface water quality from runoff and leachate associated with the municipal landfill upstream of CO1 ² , CO6 ³ and CO7/CO8.
COB-B-SW ⁴	Coke Oven Brook along SPAR Road, east of COB-A-SW	To further characterize the potential for impacts from the municipal landfill to COB-A-SW.
COB-4-SW	COB-A-SW	To characterize surface water quality from the upstream areas of CO1, CO6 and CO7/CO8. This sampling location is also upstream of TP6B ⁵ .
COB-6-SW	Coke Ovens Brook	To further characterize surface water quality from the upstream areas of CO1, CO6 and CO7/CO8. This sampling location is also upstream of TP6B.
WB-1-SW	Coke Ovens Brook	To characterize surface water quality within the urban area of Sydney upstream of TP6B and TP7 ⁶ .
NARROWS	Wash Brook	To characterize surface water quality downgradient of the majority of the remediated sites.
BP-1-SW ⁷	North Channel, Open Hearth Park	To further characterize surface water quality downgradient of the remediation sites and as it discharges to Sydney Harbour.

Notes:

1 CO7/CO8: Collection System (CO7)/Water Treatment Plant (CO8).

2 CO1: Coke Oven Brook.

3 CO6: Surface Cap.

4 Upstream monitoring station COB-B-SW was added to the monitoring program in 2015 to further characterize the potential for impacts from the municipal landfill to COB-A-SW.

5 TP6B: Solidification/Stabilization/Channel.

6 TP7: Tar Ponds Cap.

7 The LTMM location of surface water station BP-1-SW is similar to the location used during Pre-Construction activities associated with the EEM Program and is approximately 40 meters (m) upstream from the collection point utilized during the Construction period of the EEM Program.

Field data was recorded on site specific data sheets. Stream flow measurements were calculated by measuring the width of the stream at the sampling location and by measuring the depth of the stream at $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ width intervals. The stream flow velocity was also measured at $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ intervals. Using a spreadsheet formula, the approximate stream flow was calculated for

each monitoring station. Due to the depth of surface water station BP-1-SW, it was not possible to obtain field measurements across the entire stream width. Dillon personnel collected as much field data at this deeper location as safely possible (i.e., from the stream banks/shoreline). Stream flow velocity for this location was calculated using the Muggah Creek North Channel Survey (CBCL Limited, October 2014) provided by NS Lands.

Sample containers were pre-labelled by the laboratory with the sample identification, analysis required and the project number. The date and time of sample collection were noted on the sample containers in the field at the time of collection. New nitrile gloves were worn by field staff for each sample to avoid cross-contamination between sampling stations. Samples were collected by opening the container facing upstream. Where samples were collected directly into the sample bottles containing preservative, the container was not fully submerged during sampling to avoid washing the preservative out of the container. Metals sample bottles contained nitric acid preservative so that dissolved metals remained in solution.

WEATHER CONDITIONS

Weather information obtained from Environment Canada's climate station at the Sydney Airport indicates that accumulated precipitation for the 30 days preceding the July 2018 surface water monitoring program was approximately 103.2 millimeters (mm). No significant rainfall was recorded on the day of, or the three days leading up to, the sampling event.

Tidal information obtained from Meteo365 (<u>https://www.tide-forecast.com</u>) for July 25, 2018, indicated a high tide level of 1.07 m and a low tide level of 0.33 m.

FIELD OBSERVATIONS AND MEASUREMENTS

Observations at the ten surface water stations during the July 2018 monitoring program are summarized in Table 2. Field measurements are summarized in Table 3.

Tal	ole 2 – July 2018 Surface Water Quality Monitoring Station Field Obser	rvations
Monitoring Station ID	Field Observations	Corresponding Photograph Number
CB-SW	Surface water station was dry.	1
NRC-1-SW	Debris (i.e., cardboard, paper and plastic) observed in the channel and on the channel banks. A new culvert has been installed beneath Frederick Street immediately up gradient of this surface water station.	2
SRC-1-SW	Minnows, tadpoles and algae observed in the channel. Concrete channel walls had extensive spray painted graffiti visibly dissolving at the high water point.	3
COB-A-SW	Algae observed in stream and on stream banks.	4
COB-B-SW	No flow was observed; pockets of standing water only. Vegetation observed in brook. The groundwater observed flowing from the ground and into the brook down gradient of the surface water sampling point during the December 2016 and 2017 monitoring events was not present (i.e., dry).	5

Tal	Table 2 – July 2018 Surface Water Quality Monitoring Station Field Observations									
Monitoring Station ID	S Field ()hservations									
COB-4-SW	Minor vegetation growth was observed in the brook. Although there was flow at COB-4-SW from the north tributary, the tributary to the east was observed to be dry.	6								
COB-6-SW	Algae growth, moss and vegetation were observed in the brook.	7								
WB-1-SW	Tadpoles and minnows observed in brook. Debris (i.e., concrete, glass, metal, plastic) observed in the brook and on the brook banks.	8								
NARROWS	Fish, snails, barnacles, seaweed and moss observed in the channel and on the banks. Ducks observed swimming in the channel.	9								
BP-1-SW	Mussels, snails, barnacles, seaweed and moss observed in the channel and on the banks. Wood debris observed in the channel.	10								
Note:										

1 Photographs are presented in Appendix A.

Table 3	Table 3 – July 2018 Surface Water Quality Monitoring Station Field Measurements											
Monitoring Station ID	рН	Turbidity (NTU)	5		Stream Flow ¹ (m ³ /s)							
CB-SW			Dry									
NRC-1-SW	7.94	0	0.198	0	0.04							
SRC-1-SW	9.05	0	0.409	0	0.003							
COB-A-SW	8.63	0	0.458	0	No Recorded Flow							
COB-B-SW ²		No	o Flow – Standir	ng Water Only								
COB-4-SW	8.71	0	0.476	0.31	0.03							
COB-6-SW	9.66	0	0.549	0.37	0.41							
WB-1-SW	9.10	0	1.48	0.89	No Recorded Flow							
NARROWS	9.29	0	64.5	27.53	1.66							
BP-1-SW ³	8.95	0	68.9	28.60	4.08							

Notes:

1 Stream flow is an approximate calculated value.

2 COB-B-SW had only standing water on the day of the event.

3 Collected during low tide conditions.

REGULATORY FRAMEWORK

As specified in Section 4.2, page 21 of the NS Lands LTMM Plan, the remedial criteria used for eight of the ten surface water stations included in the LTMM monitoring program (i.e., CB-SW, NRC-1-SW, SRC-1-SW, COB-A-SW, COB-B-SW, COB-4-SW, COB-6-SW and WB-1-SW) were the Nova Scotia Contaminated Sites Regulations (NS CSRs) Tier I Environmental Quality Standards (EQS) (which came into effect July 6, 2013) for surface water (fresh water) and the Canadian Council of Ministers of the Environment (CCME) for the protection of fresh water aquatic life (FWAL) (accessed online 2018). Analytical results for the remaining two surface water stations included in the monitoring program (i.e., Narrows and BP-1-SW) were compared to the NS CSRs

Tier I EQS for surface water (marine) and the CCME guidelines for the protection of aquatic life (marine).

Additionally, as specified in Section 4.2, page 21 of the NS Lands LTMM Plan, analytical results for surface water samples collected at the upstream sampling stations were compared to previously calculated 95% upper confidence limits (UCL) of available Pre-Construction/Baseline analytical data from the EEMSWCM Program associated with the Sydney Tar Ponds remediation. Furthermore, analytical results for the upstream sampling stations were also compared to calculated 95% UCLs of available historical upstream analytical data (i.e., the Upstream Calculated 95% UCL). Analytical results for the two sampling stations near Sydney Harbour were compared to the calculated 95% UCLs of available Pre-Construction/Baseline analytical data for the Battery Point sampling station.

SURFACE WATER QUALITY TREND ANALYSIS - MANN KENDALL

Mann-Kendall analysis as a non-parametric statistic test routinely used to assess the stability of a solute plume (i.e., are concentration trends stable, decreasing, or increasing). At least four independent sampling events are required to evaluate surface water quality trends via Mann-Kendall analysis. The Mann-Kendall test procedure starts by comparing the most recent round of water quality data with the results of earlier rounds. Non-detect data values are typically assigned a value that is half the laboratory detection limit. The Mann-Kendall test is not designed to account for seasonal variation in data.

Based on a review of the analytical results from the 2018 monitoring event and historical monitoring events, select parameters, with concentrations above (or historically above) applicable guidelines were selected for Mann-Kendall analysis. These include PAH indicator parameters anthracene, pyrene and benzo(a)pyrene, and inorganic chemistry indicator parameters boron, cadmium, strontium, sulphate and zinc.

In certain situations, Mann-Kendall analysis results may be biased due to elevated laboratory detection limits. Non-detected data on the Mann-Kendall analysis of indicator parameters was identified and confirmed the influence of non-detected data is minimal.

SURFACE WATER RESULTS

The surface water quality results for the July 2018 event, and available post-remediation surface water data, are presented in the attached Tables B-1 and B-2 in Appendix B. Laboratory certificates of analysis are presented in Appendix C. As stated above, surface water samples were analyzed for PAHs and RCApMS. Samples were delivered to Maxxam Analytics in Sydney, Nova Scotia (Maxxam) for analysis. Maxxam is accredited through the Standard Council of Canada (SCC) and is a member of the Canadian Association for Laboratory Accreditation (CALA).

Review of the July 2018 data indicates:

- · PAH results:
 - The concentrations of benzo(a)anthracene (0.024 ug/L); benzo(a)pyrene (0.034 ug/L); fluoranthene (0.073 ug/L); and, pyrene (0.06 ug/L), in SRC-1-SW, each exceeded their corresponding NSE Tier I EQS and CCME FWAL guidelines of 0.018 ug/L, 0.015 ug/L, 0.04 ug/L and 0.025 ug/L, respectively. This is the first exceedance of benzo(a)anthracene at SRC-1-SW. The fluoranthene and pyrene concentrations in the field duplicate sample collected from SRC-1-SW also exceeded the respective Tier I EQS and CCME FWAL guidelines; however, the detected benzo(a)anthracene and benzo(a)pyrene concentrations were detected at, or slightly below, the Tier I EQS and CCME FWAL guidelines.

The remaining PAH parameters analyzed were below criteria. A summary of concentrations of select organic parameters (i.e., naphthalene and benzo(a)pyrene) at each station recorded during the July 2018 event relative to the calculated 95% UCLs is provided in Table 4. There were no exceedances of the relative calculated 95% UCLs for naphthalene and benzo(a)pyrene during the July 2018 monitoring event.

- General chemistry and metals results:
 - Concentrations of aluminum ranging from 23 ug/L to 2500 ug/L exceeded the Tier I EQS (fresh water) standard of 5 ug/L in NRC-1-SW, SRC-1-SW, the field duplicate sample of SRC-1-SW, COB-A-SW, COB-4-SW, COB-6-SW and WB-1- SW. Aluminum concentrations ranging from 120 ug/L to 2500 ug/L at NRC-1-SW, SRC-1-SW, the field duplicate sample of SRC-1-SW, COB-A-SW and WB-1- SW exceeded the CCME FWAL guideline of 100 ug/L. Aluminum concentrations ranging from 270 ug/L to 2500 ug/L in NRC-1-SW, SRC-1-SW, sRC-1-SW, the field duplicate sample of SRC-1-SW, the field duplicate sample of SRC-1-SW, the field duplicate sample of SRC-1-SW and COB-A-SW also exceeded the Upstream Calculated 95% UCL of 220 ug/L;
 - The concentrations of arsenic ranging from 2.6 ug/L to 4.9 ug/L at SRC-1-SW, the field duplicate sample of SRC-1-SW and COB-A-SW exceeded both the Upstream Calculated 95% UCL of 1.6 ug/L and Pre-Construction/Baseline Calculated 95% UCL of 1.98 ug/L;
 - The boron concentrations of 2800 ug/L and 3500 ug/L in BP-1-SW and the Narrows, respectively, exceeded the Tier I EQS (marine) standard of 1200 ug/L;
 - The chloride concentration of 460 mg/L in WB-1-SW exceeded the CCME FWAL standard of 120 mg/L;
 - Cadmium concentrations ranging from 0.012 ug/L to 0.26 ug/L in NRC-1-SW, SRC-1-SW, the field duplicate sample of SRC-1-SW, COB-A-SW and WB-1-SW exceeded the Tier I EQS (fresh water) standard of 0.01 ug/L. The cadmium concentration of 0.26 ug/L in SRC-1-SW and 0.18 ug/L in the field duplicate of SRC-1-SW also exceeded the CCME FWAL guideline of 0.09 ug/L and the Upstream Calculated 95% UCL of 0.1 ug/L;
 - The chromium concentration of 4.0 ug/L in SRC-1-SW and 2.5 ug/L in the field duplicate of SRC-1-SW exceeded the CCME FWAL of 1 ug/L. The laboratory detection limit for chromium was elevated above the CCME (marine) guideline for Battery Point and the Narrows;
 - The cobalt concentration of 1.9 ug/L in SRC-1-SW and 1.6 ug/L in COB-A-SW exceeded the Pre-Construction/Baseline Calculated 95% UCL of 1.3 ug/L. The cobalt concentration in the field duplicate sample of SRC-1-SW was just below the Pre-Construction/Baseline Calculated 95% UCL value. The laboratory detection limit for chromium was elevated above the Battery Point/Narrows Calculated 95% UCL;
 - The concentrations of copper ranging from of 2.2 ug/L to 7.9 ug/L in NRC-1-SW, SRC-1-SW, the field duplicate sample of SRC-1-SW, COB-A-SW and WB-1-SW exceeded the Tier I EQS and CCME FWAL guideline of 2 ug/L;
 - Iron concentrations ranging from 330 ug/L to 9100 ug/L in NRC-1-SW, SRC-1-SW, the field duplicate sample of SRC-1-SW, COB-A-SW and WB-1-SW exceeded the Tier I EQS (fresh water) and CCME FWAL concentration of 300 ug/L. Iron concentrations ranging from 3400 ug/L to 9100 ug/L in SRC-1-SW, the field duplicate sample of SRC-1-SW and COB-A-SW also exceeded the Upstream Calculated 95% UCL of 3318 ug/L and Pre-Construction/Baseline Calculated 95% UCL of 1900 ug/L. The iron concentration of 1000 ug/L in BP-1-SW exceeded the Battery Point/Narrows Calculated 95% UCL of 190 ug/L. The laboratory detection limit for iron was elevated above the Battery Point/Narrows Calculated 95% UCL for the Narrows;

Table 4 - Summary of Organic Surface Water Indicator Parameter Concentrations relative to Calculated 95% (ug/L)												
				Sample Location								
Parameter	Pre-Construction/ Baseline Calculated 95% UCL ¹	Date	CB-SW	NRC-1-SW	SRC-1-SW	COB-A-SW	COB-B-SW ²	COB-4-SW	WS-9-BOD	WS-1-8W	NARROWS	BP-1-SW
		12/22/2014	< 0.20	< 0.20	< 0.20	< 0.20	-	< 0.20	< 0.20	< 0.20	0.22	< 0.20
		7/27/2015	< 0.20	< 0.20	< 0.20	Dry	Dry	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		11/18/2015	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Nanhthalana	1.8	7/22/2016	< 0.20	< 0.20	< 0.20	Dry	Dry	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Naphthalene 1.8	1.0	12/8/2016	< 0.20	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.38	< 0.20	0.21	< 0.20
		8/3/2017	< 0.20	Dry	< 0.20	Dry	Dry	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		12/18/2017	< 0.20	< 0.20	< 0.20	Dry	< 0.20	< 0.20	0.54	< 0.20	0.30	0.33
		7/25/2018	Dry	< 0.20	< 0.20	< 0.20	Dry	No. No. <td>< 0.20</td>	< 0.20			
		12/22/2014	< 0.010	< 0.010	< 0.010	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
		7/27/2015	< 0.010	< 0.010	< 0.010	Dry	Dry	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
		11/18/2015	< 0.010	0.068	< 0.010	< 0.010	< 0.010	0.39	0.015	< 0.010	< 0.010	< 0.010
Danas (a) memora	0.05	7/22/2016	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.025	< 0.010	< 0.010
Benzo(a)pyrene	0.05	12/8/2016	< 0.010	0.011	< 0.010	< 0.010	< 0.010	0.028	0.027	< 0.010	< 0.010	< 0.010
		8/3/2017	< 0.010	Dry	< 0.010	Dry	Dry	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
		12/18/2018	< 0.010	< 0.010	0.016	Dry	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
		7/25/2018	Dry	< 0.010	0.034	< 0.010	Dry	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Notes:

¹Pre-Construction/Baseline Calculated 95% UCL are from the EEMSWCM Program

² Added to the program in July 2015

Bold indicates the concentration exceeds the Pre-Construction/Baseline Calculated 95% UCL

- Lead concentrations ranging from 1.4 ug/L to 12 ug/L in SRC-1-SW, the field duplicate sample of SRC-1-SW, COB-A-SW and WB-1- SW, exceeded the Tier I EQS and CCME FWAL of 1 ug/L and the Upstream Calculated 95% UCL of 1.2 ug/L;
- The manganese concentrations ranging from 2600 ug/L to 2900 ug/L in SRC-1-SW, the field duplicate for SRC-1-SW and COB-A-SW exceeded the Tier I EQS of 820 ug/L, the Upstream Calculated 95% UCL of 583 ug/L and the Pre-Construction/Baseline Calculated 95% UCL of 800 ug/L. The manganese concentrations ranging of 94 ug/L and 100 ug/L in BP-1-SW and the Narrows, respectively, exceeded the Battery Point/Narrows Calculated 95% UCL of 70 ug/L;
- Mercury concentrations of 0.04 ug/L in SRC-1-SW and the field duplicate sample of SRC-1-SW exceeded the Tier I EQS and CCME FWAL of 0.026 ug/L. These concentrations are the only recorded exceedances for mercury since 2014, with the exception of one instance in November 2015 when mercury exceeded the Tier I EQS and CCME FWAL at COB-4-SW.
- The laboratory detection limits for nickel and selenium were elevated above the NSE Tier I EQS for Battery Point and the Narrows;
- Concentrations of strontium ranging from 170 ug/L to 430 ug/L in SRC-1-SW, the field duplicate of SRC-1-SW, COB-A-SW, COB-4-SW, COB-6-SW and WB-1-SW were above the Upstream 95% UCL of 132 ug/L. Strontium concentrations ranging from 270 ug/L to 350 ug/L in COB-A-SW, COB-4-SW, COB-6-SW and WB-1-SW were also above the Pre-Construction/Baseline 95% UCL of 210 ug/L;
- Sulphate concentrations ranging from of 43 mg/L to 100 mg/L at SRC-1-SW, the field duplicate of SRC-1-SW, COB-A-SW, COB-4-SW, COB-6-SW and WB-1-SW exceeded the Upstream Calculated 95% UCL of 26 mg/L. Sulphate concentrations ranging from 95 mg/L to 100 mg/L at COB-A-SW, COB-4-SW and COB-6-SW were also above the Pre-Construction/Baseline Calculated 95% UCL of 84 mg/L;
- The vanadium concentrations of 7.4 ug/L and 4.9 ug/L in SRC-1-SW and the field duplicate of SRC-1-SW, respectively, exceeded the Tier I EQS of 6 ug/L; and,
- The zinc concentrations of 47 ug/L and 30 mg/L in SRC-1-SW and the field duplicate sample of SRC-1-SW exceeded the Tier I EQS of 7 ug/L. The zinc concentration of 47 ug/L in SRC-1-SW also exceeded the CCME FWAL of 30 ug/L, with the concentration of the field duplicate sample of SRC-1-SW the same as the CCME FWAL guideline.

The remaining general chemistry parameters were below applicable criteria. Table 5 provides a summary of concentrations for select inorganic parameters from the July 2018 sampling event relative to the calculated 95% UCLs. Inorganic parameter exceedances relative to the calculated 95% UCLs were noted in each of the analyzed samples from the July 2018 monitoring event.

TREND ANALYSIS

The groundwater quality trend analysis for the July 2018 monitoring event was based on the available analytical results (i.e., four rounds of sampling events are required) for select parameters, including PAH indicator parameters anthracene, pyrene and benzo(a)pyrene and inorganic chemistry indicator parameters boron, cadmium, strontium, sulphate and zinc. Trend analysis results for these select parameters were generally stable or indicated fluctuations with no trend or a generally declining trend. Mann-Kendall results are presented in Appendix D.

		-	-					1				
Sample Location			Al	As	Cd	Cr	Co	Fe (/L)	Pb	Mn	Se	Sr
Upstream		(IIIg/L) 26	220	1.6	0.1	8.3	-	3,318	1.2	583	1.9	132
Pre-Construction/Baseline	Calculated 95% UCL ¹	84	-	1.98	-	-	1.3	1,900	-	800	-	210
	12/22.2014	26	110	<1.0	0.018	<1.0	<0.40	290	<0.50	190	<1.0	130
							<0.40 <0.40	260 280	<0.50 <0.50	61 140	<1.0 <1.0	320 140
	7/22/2016	10	55	1.4	<0.011	<1.0	<0.40	640	<0.50	71	<1.0	160
CB-SW	12/8/2016	23	84	<1.0	0.017	<1.0	< 0.40	330	< 0.50	310	<1.0	110
	8/3/2017	12	150	1.4	< 0.010	1.0	< 0.40	750	0.61	380	<1.0	<u>340</u>
		24	91	<1.0	0.015	<1.0	<0.40	300	<0.50	200	<1.0	130
		20	58	<1.0	0.022	<1.0	Dry <0.40	150	< 0.50	85	<1.0	32
	7/27/2015	20	45	<1.0	0.019	<1.0	<0.40	1,300	<0.50	75	<1.0	54
	11/18/2015	15	1,500	3.5	0.14	1.9	<u>1.5</u>	3,800	9.5	1,100	<1.0	36
NRC-1-SW	7/22/2016	15	31	<1.0	0.016	<1.0	< 0.40	970	0.61	47	<1.0	52
		16	110	<1.0	0.025	<1.0	<0.40 Dry	360	0.8	200	<1.0	34
		21	34	<1.0	0.016	<1.0	<0.40	140	< 0.50	87	<1.0	31
	7/25/2018	12	270	<1.0	0.012	<1.0	<0.40	460	0.99	62	<1.0	60
	12/22.2014	54	290	<1.0	0.035	<1.0	<0.40	340	1.2	190	<1.0	150
	7/27/2015	47	51	1.0	0.013	<1.0	<0.40	210	1.1	260	<1.0	150
SRC-1-SW COB-A-SW COB-B-SW ²							<0.40	310 350	0.75 <0.50	230 350	<1.0 <1.0	150
			50 300	1.9 <1.0	0.018	<1.0	<0.40 <0.40	350 400	<0.50 1.6	200	<1.0 <1.0	170 140
	8/3/2017	54	24	1.8	<0.010	<1.0	<0.40	150	<0.50	91	<1.0	190
Usin Organization (95) (C12) 240 1.60 1.10 1.50 1.50 PreConstruction Russities Calculated 955 (C12) 341 1.10 1.10 0.011 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011	<u>1.7</u>	4,600	10	2,200	<1.0	140						
		43					<u>1.9</u>	<u>5,500</u>	12	2,600	<1.0	170
		<u>160</u>	16	<1.0	<0.010	<1.0	<0.40	51	<0.50	25	<1.0	<u>260</u>
		170	5.1	<1.0	<0.010	<1.0	Dry <0.40	82	<0.50	74	<1.0	260
		110	5.1	<1.0	<0.010	<1.0	Dry	02	<0.50	,4	<1.0	200
COB-A-SW	12/8/2016	150	8.5	<1.0	< 0.010	<1.0	<0.40	68	< 0.50	92	<1.0	250
	8/3/2017				•		Dry	•		•		
			1		1		Dry	1	1	1	1	
		<u>100</u>	300	2.6	0.058	<1.0	<u>1.6</u> Dry	<u>9,100</u>	1.4	<u>2,900</u>	<1.0	<u>270</u>
		190	79	<1.0	<0.010	<1.0	<0.40	<50	<0.50	21	<1.0	250
		150	1.5	<1.0	<0.010	<1.0	Dry	0.0	<0.50	21	<1.0	200
COB-B-SW ²		<u>440</u>	13	<1.0	0.027	<1.0	0.90	130	< 0.50	1,400	<1.0	480
COB-B-SW ²							Dry					
		<u>120</u>	6.7	<1.0	< 0.010	<1.0	0.42	110	<0.50	490	000 <1.0	190
		47	82	<1.0	0.014	<1.0	Dry <0.40	210	< 0.50	95	<1.0	140
							<0.40	460	<0.50	110		250
							4.6	14,000	37	1,500	<1.0	150
COB-4-SW		74	28	<1.0	< 0.010	<1.0	< 0.40	300	< 0.50	140	<1.0	<u>270</u>
Upstream Pre-Construction/Baseline CB-SW NRC-1-SW SRC-1-SW COB-A-SW COB-A-SW COB-A-SW COB-A-SW COB-A-SW COB-A-SW SRC-1-SW ACOB-A-SW COB-A-SW ACOB-A-SW ACOB-A-SW A		•••					<0.40	390	0.99	180		110
							<0.40 <0.40	83 270	<0.50 <0.50	130 120		450 110
							<0.40	51	0.75	23	<1.0	430
		56	61	<1.0	0.01	<1.0	<0.40	170	< 0.50	56	<1.0	180
							< 0.40	160	< 0.50	23	<1.0	<u>300</u>
			-				<0.40	490	1.5	79	<1.0	180
Upstream C Pre-Construction/Baseline C CB-SW NRC-1-SW SRC-1-SW COB-A-SW COB-A-SW COB-A-SW COB-A-SW COB-A-SW COB-A-SW MB-1-SW Battery Point/ Narrows C NARROWS							<0.40 <0.40	180 360	<0.50 1.0	37 110	<1.0 <1.0	<u>300</u> 160
							<0.40	<50	<0.50	35	<1.0	500
							<0.40	260	<0.50	73	<1.0	160
			23		< 0.010		< 0.40	140	<0.50	110	<1.0	350
							<0.40	270	0.71	95	<1.0	53
							<0.40 <0.40	480 200	<0.50 <0.50	41 43	<1.0 <1.0	100 73
							<0.40 <0.40	200 590	<0.50 0.56	43	<1.0 <1.0	1300
WB-1-SW							<0.40	220	<0.50	100	<1.0	61
			29	1.0	0.027		< 0.40	680	< 0.50	450	<1.0	<u>940</u>
	8/3/2017					<1.0	< 0.40	190	<0.50	63	<1.0	49
	8/3/2017 12/18/2017	8.0	110	<1.0			0.15					
	8/3/2017 12/18/2017	8.0	110	<1.0			<0.40	330	1.8	140	<1.0	<u>320</u>
Battery Point/ Narrows	8/3/2017 12/18/2017 7/25/2018	8.0 71	110 120	<1.0 <1.0	0.024	<1.0	<0.40 0.9	330 190	-	140 70	<1.0	<u>320</u> 7,000
Battery Point/ Narrows (8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹	8.0 71 2,180	110 120 -	<1.0 <1.0	-	<1.0						
Battery Point/ Narrows	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014	8.0 71 2,180 270	110 120 - 110	<1.0 <1.0 - <1.0	0.024	<1.0 - <1.0	0.9	190	-	70	-	7,000
Battery Point/ Narrows	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015	8.0 71 2,180 270 1,500 110	110 120 - 110 86 76	<1.0 <1.0 - <1.0 <10 <1.0	0.024 - 0.027 <0.10 0.012	<1.0 - <1.0 <10 <1.0	0.9 <0.40 <4.0 <0.40	190 250 <500 320	- <0.50 <5.0 <0.50	70 63 100 45	- <1.0 <10 <1.0	7,000 610 5,400 370
	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016	8.0 71 2,180 270 1,500 110 1,400	110 120 - 110 86 76 51	<1.0 <1.0 - <1.0 <10 <1.0 <1.0 <10	0.024 - - - - - - - - - - - - - - - - - - -	<1.0 - <1.0 <1.0 <1.0 <10	0.9 <0.40 <4.0 <0.40 <4.0	190 250 <500 320 <500	<0.50 <5.0 <0.50 <5.0	70 63 100 45 120	<1.0 <10 <1.0 <10	7,000 610 5,400 370 5,400
	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 12/8/2016	8.0 71 2,180 270 1,500 110 1,400 270	110 120 - 110 86 76 51 75	<1.0 <1.0 - <1.0 <10 <1.0 <1.0 <1.0 <1.0	0.024 - - - - - - - - - - - - - - - - - - -	<1.0 - <1.0 <1.0 <1.0 <1.0 <1.0	0.9 <0.40 <4.0 <0.40 <4.0 <0.40	190 250 <500 320 <500 250	<0.50 <5.0 <0.50 <5.0 <0.50	70 63 100 45 120 110	<1.0 <10 <1.0 <10 <1.0	7,000 610 5,400 370 5,400 890
	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 12/8/2016 8/3/2017	8.0 71 2,180 270 1,500 110 1,400 270 2,000	110 120 - 110 86 76 51 75 <50	<1.0 <1.0 - <1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	0.024 - 0.027 <0.10 0.012 <0.10 0.029 <0.10	<1.0 - <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	0.9 <0.40 <4.0 <0.40 <4.0	190 250 <500 320 <500	<0.50 <5.0 <0.50 <5.0	70 63 100 45 120	<1.0 <10 <1.0 <10	7,000 610 5,400 370 5,400
	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 12/8/2017 12/18/2017	8.0 71 2,180 270 1,500 110 1,400 270 2,000 150	110 120 - 110 86 76 51 75 <50 110	<1.0 <1.0 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <	0.024 - 0.027 <0.10 0.012 <0.10 0.029 <0.10 0.018	<1.0 - <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	0.9 <0.40 <4.0 <0.40 <4.0 <0.40 <4.0	190 250 <500 320 <500 250 <500	<0.50 <5.0 <5.0 <5.0 <0.50 <0.50 <5.0	70 63 100 45 120 110 110	<1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0	7,000 610 5,400 370 5,400 890 6,100
	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 12/8/2016 8/3/2017 12/18/2017 7/25/2018	8.0 71 2,180 270 1,500 110 1,400 2,000 150 1,700	110 120 - 110 86 76 51 75 <50 110 56	<1.0 <1.0 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <	0.024 0.027 <0.10 0.012 <0.10 0.029 <0.10 0.018 <0.10	<1.0 - <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	0.9 <0.40 <4.0 <0.40 <4.0 <0.40 <4.0 <0.40	190 250 <500	- <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50	70 63 100 45 120 110 127	<1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	7,000 610 5,400 370 5,400 890 6,100 450
	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 12/8/2016 8/3/2017 12/18/2017 12/18/2017 7/25/2018 12/22.2014 7/27/2015	8.0 71 2,180 270 1,500 110 1,400 270 2,000 150 1,700 1,700 1,300	110 120	<1.0 <1.0 <1.0 <10 <10 <1.0 <10 <10 <10 <10 <10 <10 <10 <10	0.024 - 0.027 <0.10 0.012 <0.10 0.029 <0.10 0.018 <0.10 0.028 <0.10	<1.0 <1.0 <10 <1.0 <10 <1.0 <10 <10 <10 <10 <10 <10 <10 <1	0.9 <0.40	190 250 <500	<0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0	70 63 100 45 120 110 120 110 59	<pre><1.0 <10 <10 <1.0 <10 <1.0 <10 <1.0 <10 <1.0 <10 <1.0 <10 <10 <10 <10</pre>	7,000 610 5,400 370 5,400 890 6,100 450 5,000 950 5,300
	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 8/3/2017 12/18/2017 7/25/2018 12/22.2014 7/27/2015 11/18/2015	8.0 71 2,180 270 1,500 110 1,400 2,000 150 1,700 1,700 1,300 190	110 120 - 110 86 76 51 75 <50 110 56 110 140 140	<1.0 <1.0 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <	0.024 0.027 <0.10 0.012 <0.10 0.029 <0.10 0.018 <0.10 0.028 <0.10 0.024	<1.0 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <	0.9 <0.40	190 250 <500	<0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50	70 63 100 45 120 110 72 100 61 59 57	<pre><1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <</pre>	7,000 610 5,400 370 5,400 890 6,100 450 5,000 950 5,300 580
Pre-Construction/Baselin CB-SW NRC-1-SW SRC-1-SW COB-A-SW COB-A-SW <t< td=""><td>8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 8/3/2017 12/18/2017 7/25/2018 12/22.2014 7/27/2015 11/1/18/2015 7/22/2016</td><td>8.0 71 2,180 1,500 1,500 1,400 2,700 2,000 150 1,700 170 1,700 190 1,600</td><td>110 120 - 110 86 76 51 75 <50 110 56 110 140 140 63</td><td><1.0 <1.0 <1.0 <10 <10 <1.0 <1.0 <1.0 <1</td><td>0.024 0.027 <0.10 0.012 <0.10 0.029 <0.10 0.018 <0.10 0.028 <0.10 0.014 <0.10</td><td><1.0 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <</td><td>0.9 <0.40 <0.40 <4.0 <0.40 <0.40 <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40</td><td>190 250 <500</td> 320 <500</t<>	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 8/3/2017 12/18/2017 7/25/2018 12/22.2014 7/27/2015 11/1/18/2015 7/22/2016	8.0 71 2,180 1,500 1,500 1,400 2,700 2,000 150 1,700 170 1,700 190 1,600	110 120 - 110 86 76 51 75 <50 110 56 110 140 140 63	<1.0 <1.0 <1.0 <10 <10 <1.0 <1.0 <1.0 <1	0.024 0.027 <0.10 0.012 <0.10 0.029 <0.10 0.018 <0.10 0.028 <0.10 0.014 <0.10	<1.0 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	0.9 <0.40 <0.40 <4.0 <0.40 <0.40 <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	190 250 <500	 <0.50 <5.0 	70 63 100 45 120 110 110 72 100 61 59 57 71 10	<pre></pre>	7,000 610 5,400 370 5,400 890 6,100 450 5,000 950 5,300 580 5,500
NARROWS	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 8/3/2017 12/18/2016 8/3/2017 12/18/2015 11/18/2015 11/18/2015 7/22/2016 12/8/2016	8.0 71 270 1,500 110 1,400 270 2,000 150 1,700 150 1,700 170 1,300 1,600 290	110 120 - 110 86 76 51 75 <50 110 56 110 140 63 86	<1.0 <1.0 <1.0 <10 <10 <10 <10 <1.0 <10 <1.0 <10 <1.0 <1.	0.024 0.027 <0.10 0.012 <0.10 0.019 0.028 <0.10 0.028 <0.10 0.014 <0.10 0.025	<1.0 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	0.9 <0.40	190 250 <500	 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <5.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 	70 63 100 45 120 110 72 100 61 59 57 71 100	<pre><1.0 <10 <10 <1.0 <10 <1.0 <1.0 <1.0 <1.</pre>	7,000 610 5,400 370 5,400 890 6,100 450 5,000 950 5,300 5,300 5,500 1,000
NARROWS	8/3/2017 12/18/2017 7/25/2018 Calculated 95% UCL ¹ 12/22.2014 7/27/2015 11/18/2015 7/22/2016 8/3/2017 12/18/2016 8/3/2017 12/18/2015 11/18/2015 11/18/2015 7/22/2016 12/8/2016	8.0 71 2,180 1,500 110 1,400 270 2,000 150 1,700 1,300 1,300 190 1,600 290 2,000	110 120 - 110 86 76 51 175 <50 110 56 6 110 140 140 63 86 <50	<1.0 <1.0 <1.0 <10 <10 <1.0 <1.0 <1.0 <1	0.024 0.027 <0.10 0.029 <0.10 0.029 <0.10 0.028 <0.10 0.028 <0.10 0.014 <0.10 0.025 <0.10	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	0.9 <0.40 <0.40 <4.0 <0.40 <0.40 <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	190 250 <500	 <0.50 <5.0 	70 63 100 45 120 110 110 72 100 61 59 57 71 10	<pre></pre>	7,000 610 5,400 370 5,400 890 6,100 450 5,000 5,000 5,300 5,300 5,500

 Notes:

 ¹Upstream, Pre-Construction/Baseline and Battery Point/Narrows Calculated 95% UCLs are from the EEMSWCM Program

 ²Added to the program in July 2015

 Bold indicates the concentration exceeds the Upstream Calculated 95% UCL

 <u>Underline</u> indicates exceedance of the Pre-Construction/Baseline Calculated 95% UCL

 Inderline indicates exceedance of the Battery Point/Narrows Calculated 95% UCL

 Underline indicates exceedance of the Battery Point/Narrows Calculated 95% UCL

Italics indicates that the laboratory detection limit is greater than the comparison criteria

QUALITY CONTROL PROCESS

The laboratory analytical certificate has been reviewed for quality assurance/quality control purposes. The laboratory completed quality control analysis including duplicates, blanks, spikes, surrogate recoveries and spiked blanks to assess accuracy and precision as well as the potential for bias, contamination and degradation or matrix effects. Review of the laboratory report indicated the following:

- A poor RCAp ion balance, due to sample matrix, was reported for WB-1-SW, BP-1-SW and the Narrows;
- Elevated reporting limits for trace metals due to sample matrix was reported for the BP-1-SW and the Narrows;
- There was an increase in the reporting limit for total organic carbon (TOC) in SRC-1-SW and the field duplicate sample of SRC-1-SW due to turbidity; however, the reporting limit remained below the applicable comparison criteria; and,
- The laboratory reporting limit for TOC at the Narrows was elevated due to sample matrix; however, the reporting limit remained below the applicable comparison criteria.

One field duplicate of sample SRC-1-SW was collected during the July 2018 monitoring event. The relative percent difference (RPD) was calculated between the sample and associated field duplicate results. The RPD was not calculated for those parameters where one or both of the results associated with the original and/or field duplicate sample exhibited concentrations less than five times the laboratory reportable detection limit (RDL). Calculations indicate that the RPDs for eleven (i.e., total organic carbon, turbidity, aluminum, arsenic, barium, cadmium, iron, lead, tin, vanadium and zinc) of the seventy-four analyzed parameters were above the acceptable RPD (i.e., 40% for organics and 25% for inorganics) with calculated RPDs ranging from 34.1% to 84.40%.

Further review of the concentrations for these eleven parameters indicate that although the RPD was above the recommended criteria, the findings for both the original sample and the duplicate sample were consistent (i.e., both the original and the duplicate sample results were either both below the comparison criteria or both exceeded the same comparison criteria). Overall, the data quality is considered acceptable and the results representative. There were no holding time exceedances.

SUMMARY

.

Analytical results of the July 2018 surface water monitoring program indicate that concentrations of the majority of the analyzed parameters are below the applicable criteria and respective 95% UCLs. Criteria and 95% UCL exceedances are summarized in Table 6.

Parameter	Location (Criteria and/or 95% UCL Exceedance)
Benzo(a)anthracene	SRC-1-SW (Tier I EQS (fresh water) and CCME FWAL)
Benzo(a)pyrene	SRC-1-SW (Tier I EQS (fresh water) and CCME FWAL)
Fluoranthene	 SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water) and CCME FWAL)
Pyrene	 SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water) and CCME FWAL)

Table 6 - Summary of Surface Water Station Criteria and 95 % UCL Exceedances July 2018

Table 6 - Summary of Surface Water Station Criteria and 95 % UCL Exceedances July 2018							
Parameter	Location (Criteria and/or 95% UCL Exceedance)						
Aluminum	 NRC-1-SW (Tier I EQS (fresh water), CCME FWAL and the Upstream Calculated 95% UCL) SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water) CCME FWAL and Upstream Calculated 95% UCL) COB-A-SW (Tier I EQS (fresh water), CCME FWAL and the Upstream Calculated 95% UCL) COB-4-SW (Tier I EQS (fresh water)) COB-6-SW (Tier I EQS (fresh water)) WB-1-SW (and the field duplicate sample of WB-1-SW) (Tier I EQS (fresh water) and CCME FWAL) 						
Arsenic	 SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Upstream Calculated 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) COB-A-SW (Upstream Calculated 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) 						
Boron	 BP-1-SW (Tier I EQS (marine)) Narrows (Tier I EQS (marine)) 						
Chloride	• WB-1-SW (CCME FWAL)						
Cadmium	 NRC-1-SW (Tier I EQS (fresh water)) SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water), CCME FWAL and the Upstream Calculated 95% UCL) COB-A-SW (Tier I EQS (fresh water)) WB-1-SW (Tier I EQS (fresh water)) 						
Chromium	SRC-1-SW (and the field duplicate sample of SRC-1-SW) (CCME FWAL)						
Cobalt	 SRC-1-SW (Pre-Construction/Baseline Calculated 95% UCL) COB-A-SW (Pre-Construction/Baseline Calculated 95% UCL) 						
Copper	 NRC-1-SW (Tier I EQS (fresh water) and CCME FWAL) SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water) and CCME FWAL) COB-A-SW (Tier I EQS (fresh water) and CCME FWAL) WB-1-SW (Tier I EQS (fresh water) and CCME FWAL) 						
Iron	 NRC-1-SW (Tier I EQS (fresh water) and CCME FWAL) SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water), CCME FWAL, Upstream Calculated 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) COB-A-SW (Tier I EQS (fresh water), CCME FWAL, Upstream Calculated 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) WB-1-SW (Tier I EQS (fresh water) and CCME FWAL) BP-1-SW (Battery Point/Narrows Calculated 95% UCL) 						
Lead	 SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water), CCME FWAL and the Upstream Calculated 95% UCL) COB-A-SW (Tier I EQS (fresh water), CCME FWAL and the Upstream Calculated 95% UCL) 						

Table 6 - Summary of Surface Water Station Criteria and 95 % UCL Exceedances July 2018							
Parameter	Location (Criteria and/or 95% UCL Exceedance)						
	WB-1-SW (Tier I EQS (fresh water), CCME FWAL and the Upstream Calculated 95% UCL)						
Manganese	 SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water), Upstream Calculated 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) COB-A-SW (Tier I EQS (fresh water), Upstream Calculated 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) BP-1-SW (Battery Point/Narrows Calculated 95% UCL) Narrows (Battery Point/Narrows Calculated 95% UCL) 						
Mercury	SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water) and CCME FWAL)						
Strontium	 SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Upstream Calculated 95% UCL) COB-A-SW (Upstream 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) COB-4-SW (Upstream 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) COB-6-SW (Upstream 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) WB-1-SW (Upstream 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) 						
Sulphate	 SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Upstream 95% UCL) COB-A-SW (Upstream 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) COB-4-SW (Upstream 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) COB-6-SW (Upstream 95% UCL and Pre-Construction/Baseline Calculated 95% UCL) WB-1-SW (Upstream 95% UCL) 						
Vanadium	SRC-1-SW (and the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water))						
Zinc	 SRC-1-SW (and/or the field duplicate sample of SRC-1-SW) (Tier I EQS (fresh water) and CCME FWAL) 						

Review of the surface water analytical data from the July 2018 monitoring event indicates findings are generally consistent with past LTMM events, with the following exceptions:

Historical PAH concentrations in surface water at SRC-1-SW were below regulatory criteria since the commencement of the LTMM. However, during the December 2017 and July 2018 sampling events concentrations of PAHs (i.e., benzo(a)anthrachene, benzo(a)pyrene, fluoranthene and/or pyrene) exceeded the Tier I EQS and the CCME FWAL. It is noted that the July 2018 benzo(a)anthracene exceedance of the Tier I EQS and CCME FWAL at SRC-1-SW was the first time this parameter exceeded regulatory criteria since the LTMM commenced. Additionally, increases in concentrations of some

metals parameters have also been observed at SRC-1-SW during the December 2017 and July 2018 monitoring events, including an exceedance of the Tier I EQS and CCME FWAL for mercury. This is the first time mercury has exceeded at this sampling location and only the second observed mercury exceedance since the LTMM commenced (i.e., the first exceedance of the Tier I EQS and CCME FWAL for mercury was at COB-4-SW in November 2015);

- During the July 2018 sampling program, elevated metals concentrations were reported for surface water station COB-A-SW. Specifically, aluminum and zinc exceeded the CCME FWAL guideline for the first time; arsenic exceeded the Pre-Construction/Baseline Calculated 95% Upper Concentration Limit and the Upstream Calculated 95% UCL for the first time; cadmium exceeded the Tier I EQS for the first time; cobalt exceeded the Pre-Construction/Baseline Calculated 95% Upper Concentration Limit and the CCME FWAL for the first time; cobalt exceeded the Tier I EQS and the CCME FWAL for the first time, with lead also exceeding the Upstream Calculated 95% UCL for the first time; iron exceeded the Tier I EQS, CCME FWAL, Pre-Construction/Baseline Calculated 95% Upper Concentration Limit and the Upstream Calculated 95% UCL for the first time; and manganese exceeded the Tier I EQS, Pre-Construction/Baseline Calculated 95% Upper Concentration Limit and the Upstream Calculated 95% UCL for the first time; and, canner and lead exceedea and the Tier I EQS and COME FWAL for the first time; and, canner and lead exceedea and the Calculated 95% UCL for the first time; and, canner and lead exceedea and the Tier I EQS and COME FWAL for the first time; and, canner and lead exceedea and the Tier I EQS and COME FWAL for the first time; and, canner and lead exceedea and the Upstream Calculated 95% UCL for the first time; and, canner and lead exceedea and the Upstream Calculated 95% UCL for the first time; and, canner and lead exceedea and the Upstream Calculated 95% UCL for the first time; and, canner and lead exceedea and the Come first EWAL for the first time; and for the first time; and
- Copper and lead exceedances of the Tier I EQS and CCME FWAL were reported for surface water station WB-1-SW. The lead concentration also exceeded the Upstream Calculated 95% UCL. This was the first time that copper and lead exceeded criteria since the LTMM commenced.

As noted above in Table 1, monitoring of SRC-1-SW is undertaken to characterize surface water quality related to runoff from the upstream municipal landfill and monitoring of COB-A-SW is undertaken to characterize surface water quality from runoff and leachate associated with the municipal landfill upstream of CO1, CO6 and CO7/CO8. There is potential that the above noted concentration changes at SRC-1-SW and COB-A-SW are related to upstream operations associated with the landfill; however, further investigation would be required to confirm this.

RECOMMENDATIONS

The next surface water monitoring event will be conducted in the fall (e.g., November 2018). It is recommended that fall 2018 sampling program include the collection of surface water samples at ten stations (i.e., CB-SW, NRC-1-SW, SRC-1-SW, COB-A-SW, COB-B-SW, COB-4-SW, COB-6-SW, WB-1-SW, Narrows and BP-1-SW) for PAH and RCApMS analysis.

DISCLAIMER

This report was prepared exclusively for the purposes, project and site location outlined in the report. The report is based on information provided to, or obtained by Dillon Consulting Limited ("Dillon") as indicated in the report, and applies solely to site conditions existing at the time of the site investigation. Although a reasonable investigation was conducted by Dillon, Dillon's investigation was by no means exhaustive and cannot be construed as a certification of the absence of any contaminants from the site. Rather, Dillon's report represents a reasonable review of available information within an agreed work scope, schedule and budget. It is therefore possible that currently unrecognized contamination or potentially hazardous materials may exist at the site, and that the levels of contamination or hazardous materials may vary across the site. Further review and updating of the report may be required as local and site conditions, and the regulatory and planning frameworks, change over time.

CLOSING

We trust this information is adequate for your needs. Please, however, contact the undersigned if you have any comments or questions regarding the content of this report.

Yours truly,

DILLON CONSULTING LIMITED

Vambel adina

Nadine J. Wambolt, B. Tech., CET Project Manager

NJW:kme Our File: 14-1360-1800

APPENDIX A SITE PHOTOGRAPHS

PHOTO 1: View of CB-SW looking southeast.

PHOTO 2: View looking from NRC-1-SW to the southeast.

PHOTO 3: View of SRC-1-SW looking northeast.

PHOTO 4: View of COB-A-SW looking west.

PHOTO 5: View of COB-B-SW looking southwest.

PHOTO 6: View of COB-4-SW looking northeast.

PHOTO 7: View of COB-6-SW looking northeast.

PHOTO 8: View of WB-1-SW looking southwest.

PHOTO 9: View of the NARROWS looking southeast.

PHOTO 10: View of BP-1-SW looking southeast.

APPENDIX B TABLES

APPENDIX C LABORATORY CERTIFICATE

Your Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

Attention: Nadine Wambolt

Dillon Consulting Limited 275 Charlotte St Sydney, NS CANADA B1P 1C6

> Report Date: 2018/08/09 Report #: R5348892 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8I7512

Received: 2018/07/25, 15:46

Sample Matrix: Water # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide (1)	9	N/A	2018/08/02	N/A	SM 22 4500-CO2 D
Alkalinity (1)	9	N/A	2018/08/01	ATL SOP 00013	EPA 310.2 R1974 m
Benzo(b/j)fluoranthene Sum (water) (1)	2	N/A	2018/08/07	N/A	Auto Calc.
Benzo(b/j)fluoranthene Sum (water) (1)	7	N/A	2018/08/09	N/A	Auto Calc.
Chloride (1)	2	N/A	2018/08/01	ATL SOP 00014	SM 23 4500-Cl- E m
Chloride (1)	7	N/A	2018/08/02	ATL SOP 00014	SM 23 4500-Cl- E m
Colour (1)	9	N/A	2018/08/01	ATL SOP 00020	SM 22 2120C m
Conductance - water (1)	9	N/A	2018/08/01	ATL SOP 00004	SM 23 2510B m
Hardness (calculated as CaCO3) (1)	6	N/A	2018/08/01	ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3) (1)	3	N/A	2018/08/02	ATL SOP 00048	Auto Calc
Mercury - Total (CVAA,LL) (1)	9	2018/07/31	2018/08/01	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Total MS (1)	6	2018/07/31	2018/07/31	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS (1)	3	2018/07/31	2018/08/01	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference) (1)	9	N/A	2018/08/03	N/A	Auto Calc.
Anion and Cation Sum (1)	9	N/A	2018/08/02	N/A	Auto Calc.
Nitrogen Ammonia - water (1)	9	N/A	2018/08/01	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite (1)	9	N/A	2018/08/01	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite (1)	9	N/A	2018/08/02	ATL SOP 00017	SM 23 4500-NO2- B m
Nitrogen - Nitrate (as N) (1)	9	N/A	2018/08/02	ATL SOP 00018	ASTM D3867-16
PAH in Water by GC/MS (SIM) (1)	7	2018/07/30	2018/08/04	ATL SOP 00103	EPA 8270D 2014 m
PAH in Water by GC/MS (SIM) (1)	1	2018/07/30	2018/08/05	ATL SOP 00103	EPA 8270D 2014 m
PAH in Water by GC/MS (SIM) (1)	1	2018/07/31	2018/08/05	ATL SOP 00103	EPA 8270D 2014 m
pH (1, 2)	9	N/A	2018/08/01	ATL SOP 00003	SM 23 4500-H+ B m
Phosphorus - ortho (1)	9	N/A	2018/08/01	ATL SOP 00021	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C) (1)	9	N/A	2018/08/03	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C) (1)	9	N/A	2018/08/03	ATL SOP 00049	Auto Calc.
Reactive Silica (1)	9	N/A	2018/08/01	ATL SOP 00022	EPA 366.0 m
Sulphate (1)	9	N/A	2018/08/01	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc) (1)	9	N/A	2018/08/03	N/A	Auto Calc.
Organic carbon - Total (TOC) (1, 3)	1	N/A	2018/07/31	ATL SOP 00203	SM 23 5310B m

Your Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

Attention: Nadine Wambolt

Dillon Consulting Limited 275 Charlotte St Sydney, NS CANADA B1P 1C6

> Report Date: 2018/08/09 Report #: R5348892 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8I7512 Received: 2018/07/25, 15:46

Sample Matrix: Water # Samples Received: 9

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Reference
Organic carbon - Total (TOC) (1, 3)	8	N/A	2018/08/01	ATL SOP 00203	SM 23 5310B m
Turbidity (1)	9	N/A	2018/08/01	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

(2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

(3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Your Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

Attention: Nadine Wambolt

Dillon Consulting Limited 275 Charlotte St Sydney, NS CANADA B1P 1C6

> Report Date: 2018/08/09 Report #: R5348892 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8I7512 Received: 2018/07/25, 15:46

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Natalie MacAskill, Key Account Specialist Email: NMacAskill@maxxam.ca Phone# (902)567-1255 Ext:17

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

RESULTS OF ANALYSES OF WATER

Maxxam ID		HHS869			HHT084		HHT085		HHT086		
Sampling Date		2018/07/25			2018/07/25		2018/07/25		2018/07/25		
	UNITS	NRC-1-SW	RDL	QC Batch	SRC-1-SW	RDL	COB-A-SW	RDL	COB-4-SW	RDL	QC Batch
Calculated Parameters											
Anion Sum	me/L	2.32	N/A	5647163	5.09	N/A	5.99	N/A	6.68	N/A	5647163
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	48	1.0	5647147	110	1.0	140	1.0	71	1.0	5647147
Calculated TDS	mg/L	140	1.0	5647174	290	1.0	370	1.0	400	1.0	5647174
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	5647147	1.4	1.0	1.5	1.0	4.6	1.0	5647147
Cation Sum	me/L	2.31	N/A	5647163	5.08	N/A	6.29	N/A	6.29	N/A	5647163
Hardness (CaCO3)	mg/L	59	1.0	5647152	140	1.0	240	1.0	170	1.0	5647152
Ion Balance (% Difference)	%	0.220	N/A	5647160	0.100	N/A	2.44	N/A	3.01	N/A	5647160
Langelier Index (@ 20C)	N/A	-0.657		5647170	0.447		0.658		1.02		5647170
Langelier Index (@ 4C)	N/A	-0.907		5647172	0.197		0.409		0.772		5647172
Nitrate (N)	mg/L	0.12	0.050	5647168	0.085	0.050	<0.050	0.050	<0.050	0.050	5647168
Saturation pH (@ 20C)	N/A	8.38		5647170	7.69		7.39		7.81		5647170
Saturation pH (@ 4C)	N/A	8.63		5647172	7.94		7.64		8.06		5647172
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	48	5.0	5658397	110	25	140	25	76	5.0	5658397
Dissolved Chloride (Cl-)	mg/L	39	1.0	5658398	69	1.0	37	1.0	110	1.0	5658398
Colour	TCU	24	5.0	5658401	18	5.0	8.2	5.0	12	5.0	5658401
Nitrate + Nitrite (N)	mg/L	0.12	0.050	5658417	0.085	0.050	<0.050	0.050	<0.050	0.050	5658417
Nitrite (N)	mg/L	<0.010	0.010	5658418	<0.010	0.010	<0.010	0.010	<0.010	0.010	5658418
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	5656627	<0.050	0.050	<0.050	0.050	<0.050	0.050	5656627
Total Organic Carbon (C)	mg/L	6.4	0.50	5656473	11 (1)	5.0	3.3	0.50	4.0	0.50	5657551
Orthophosphate (P)	mg/L	<0.010	0.010	5658416	<0.010	0.010	<0.010	0.010	<0.010	0.010	5658416
рН	рН	7.73	N/A	5658382	8.14	N/A	8.05	N/A	8.84	N/A	5658382
Reactive Silica (SiO2)	mg/L	5.5	0.50	5658400	2.0	0.50	16	0.50	7.9	0.50	5658400
Dissolved Sulphate (SO4)	mg/L	12	2.0	5658399	43	2.0	100	10	100	2.0	5658399
Turbidity	NTU	1.7	0.10	5658518	140	1.0	2.4	0.10	0.42	0.10	5658518
Conductivity	uS/cm	260	1.0	5658384	540	1.0	600	1.0	720	1.0	5658384
RDL = Reportable Detection Limit											

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to turbidity.

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

RESULTS OF ANALYSES OF WATER

Maxxam ID		HHT087		HHT088		HHT089		HHT090		
Sampling Date		2018/07/25		2018/07/25		2018/07/25		2018/07/25		
	UNITS	COB-6-SW	RDL	WB-1-SW	RDL	NARROWS	RDL	BP-1-SW	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	6.41	N/A	15.8	N/A	334	N/A	377	N/A	5647163
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	1.0	63	1.0	96	1.0	96	1.0	5647147
Calculated TDS	mg/L	370	1.0	870	1.0	20000	1.0	24000	1.0	5647174
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	<1.0	1.0	1.1	1.0	1.3	1.0	5647147
Cation Sum	me/L	6.09	N/A	13.7	N/A	372	N/A	464	N/A	5647163
Hardness (CaCO3)	mg/L	210	1.0	190	1.0	3900	1.0	4800	1.0	5647152
Ion Balance (% Difference)	%	2.56	N/A	7.17	N/A	5.38	N/A	10.3	N/A	5647160
Langelier Index (@ 20C)	N/A	0.499		-0.250		0.641		0.767		5647170
Langelier Index (@ 4C)	N/A	0.250		-0.497		0.404		0.529		5647172
Nitrate (N)	mg/L	0.14	0.050	0.16	0.050	0.064	0.050	0.051	0.050	5647168
Saturation pH (@ 20C)	N/A	7.49		8.21		7.44		7.37		5647170
Saturation pH (@ 4C)	N/A	7.74		8.46		7.68		7.61		5647172
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	130	25	63	5.0	97	5.0	98	5.0	5658397
Dissolved Chloride (Cl-)	mg/L	67	1.0	460	5.0	11000	120	12000	120	5658398
Colour	TCU	12	5.0	21	5.0	8.3	5.0	9.0	5.0	5658401
Nitrate + Nitrite (N)	mg/L	0.14	0.050	0.17	0.050	0.076	0.050	0.063	0.050	5658417
Nitrite (N)	mg/L	<0.010	0.010	0.013	0.010	0.012	0.010	0.012	0.010	5658418
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	0.051	0.050	0.090	0.050	0.076	0.050	5656627
Total Organic Carbon (C)	mg/L	4.1	0.50	4.3	0.50	<5.0 (1)	5.0	2.4	0.50	5657551
Orthophosphate (P)	mg/L	<0.010	0.010	<0.010	0.010	0.018	0.010	0.022	0.010	5658416
рН	рН	7.99	N/A	7.96	N/A	8.08	N/A	8.14	N/A	5658382
Reactive Silica (SiO2)	mg/L	9.7	0.50	4.0	0.50	2.0	0.50	0.81	0.50	5658400
Dissolved Sulphate (SO4)	mg/L	95	2.0	71	2.0	1700	60	1900	60	5658399
Turbidity	NTU	0.60	0.10	1.3	0.10	0.73	0.10	1.1	0.10	5658518
Conductivity	uS/cm	640	1.0	1800	1.0	34000	1.0	39000	1.0	5658384
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

RESULTS OF ANALYSES OF WATER

Maxxam ID		HHT091		
Sampling Date		2018/07/25		
	UNITS	FD-08	RDL	QC Batch
Calculated Parameters				
Anion Sum	me/L	5.06	N/A	5647163
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	1.0	5647147
Calculated TDS	mg/L	290	1.0	5647174
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	5647147
Cation Sum	me/L	5.23	N/A	5647163
Hardness (CaCO3)	mg/L	150	1.0	5647152
Ion Balance (% Difference)	%	1.65	N/A	5647160
Langelier Index (@ 20C)	N/A	0.348		5647170
Langelier Index (@ 4C)	N/A	0.0990		5647172
Nitrate (N)	mg/L	0.066	0.050	5647168
Saturation pH (@ 20C)	N/A	7.65		5647170
Saturation pH (@ 4C)	N/A	7.90		5647172
Inorganics	•			
Total Alkalinity (Total as CaCO3)	mg/L	120	25	5658397
Dissolved Chloride (Cl-)	mg/L	63	1.0	5658398
Colour	TCU	19	5.0	5658401
Nitrate + Nitrite (N)	mg/L	0.066	0.050	5658417
Nitrite (N)	mg/L	<0.010	0.010	5658418
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	5656627
Total Organic Carbon (C)	mg/L	8.5 (1)	5.0	5657551
Orthophosphate (P)	mg/L	<0.010	0.010	5658416
рН	рН	8.00	N/A	5658382
Reactive Silica (SiO2)	mg/L	1.8	0.50	5658400
Dissolved Sulphate (SO4)	mg/L	43	2.0	5658399
Turbidity	NTU	250	1.0	5658518
Conductivity	uS/cm	530	1.0	5658384
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable (1) Elevated reporting limit due to	turbidity	<i>ı</i> .		

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		HHS869	HHT084	HHT085	HHT086	HHT087	HHT088	HHT089				
Sampling Date		2018/07/25	2018/07/25	2018/07/25	2018/07/25	2018/07/25	2018/07/25	2018/07/25				
	UNITS	NRC-1-SW	SRC-1-SW	COB-A-SW	COB-4-SW	COB-6-SW	WB-1-SW	NARROWS	RDL	QC Batch		
Metals												
Total Mercury (Hg)	ug/L	<0.013	0.040	<0.013	<0.013	<0.013	<0.013	<0.013	0.013	5656507		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch												

Maxxam ID HHT090 HHT091 Sampling Date 2018/07/25 2018/07/25 UNITS BP-1-SW FD-08 RDL QC Batch Metals Total Mercury (Hg) ug/L < 0.013 0.028 0.013 5656507 RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		HHS869	HHT084	HHT085	HHT086	HHT087	HHT088		
Sampling Date		2018/07/25	2018/07/25	2018/07/25	2018/07/25	2018/07/25	2018/07/25		
	UNITS	NRC-1-SW	SRC-1-SW	COB-A-SW	COB-4-SW	COB-6-SW	WB-1-SW	RDL	QC Batch
Metals									
Total Aluminum (Al)	ug/L	270	2500	300	43	23	120	5.0	5656109
Total Antimony (Sb)	ug/L	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	1.0	5656109
Total Arsenic (As)	ug/L	<1.0	4.9	2.6	1.0	<1.0	<1.0	1.0	5656109
Total Barium (Ba)	ug/L	14	58	73	33	35	35	1.0	5656109
Total Beryllium (Be)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5656109
Total Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5656109
Total Boron (B)	ug/L	<50	120	58	57	62	110	50	5656109
Total Cadmium (Cd)	ug/L	0.012	0.26	0.058	<0.010	<0.010	0.024	0.010	5656109
Total Calcium (Ca)	ug/L	20000	48000	80000	60000	72000	33000	100	5656109
Total Chromium (Cr)	ug/L	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	1.0	5656109
Total Cobalt (Co)	ug/L	<0.40	1.9	1.6	<0.40	<0.40	<0.40	0.40	5656109
Total Copper (Cu)	ug/L	2.5	7.9	2.2	<2.0	<2.0	4.7	2.0	5656109
Total Iron (Fe)	ug/L	460	5500	9100	51	140	330	50	5656109
Total Lead (Pb)	ug/L	0.99	12	1.4	0.75	<0.50	1.8	0.50	5656109
Total Magnesium (Mg)	ug/L	2400	5900	9300	5200	6600	26000	100	5656109
Total Manganese (Mn)	ug/L	62	2600	2900	23	110	140	2.0	5656109
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5656109
Total Nickel (Ni)	ug/L	<2.0	3.4	3.0	<2.0	<2.0	<2.0	2.0	5656109
Total Phosphorus (P)	ug/L	<100	180	160	<100	<100	<100	100	5656109
Total Potassium (K)	ug/L	770	2700	1600	2500	2800	8500	100	5656109
Total Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5656109
Total Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5656109
Total Sodium (Na)	ug/L	25000	45000	27000	64000	43000	220000	100	5656109
Total Strontium (Sr)	ug/L	60	170	270	430	350	320	2.0	5656109
Total Thallium (Tl)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5656109
Total Tin (Sn)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5656109
Total Titanium (Ti)	ug/L	7.0	50	4.6	<2.0	<2.0	2.7	2.0	5656109
Total Uranium (U)	ug/L	0.10	0.56	0.50	0.48	0.50	0.18	0.10	5656109
Total Vanadium (V)	ug/L	<2.0	7.4	<2.0	<2.0	<2.0	<2.0	2.0	5656109
Total Zinc (Zn)	ug/L	<5.0	47	14	<5.0	<5.0	6.0	5.0	5656109
RDL = Reportable Detection L	.imit								
QC Batch = Quality Control Ba	atch								

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		HHT089	HHT090		HHT091		
Sampling Date		2018/07/25	2018/07/25		2018/07/25		
	UNITS	NARROWS	BP-1-SW	RDL	FD-08	RDL	QC Batch
Metals							
Total Aluminum (Al)	ug/L	56	58	50	1600	5.0	5656109
Total Antimony (Sb)	ug/L	<10	<10	10	<1.0	1.0	5656109
Total Arsenic (As)	ug/L	<10	<10	10	3.5	1.0	5656109
Total Barium (Ba)	ug/L	29	23	10	46	1.0	5656109
Total Beryllium (Be)	ug/L	<10	<10	10	<1.0	1.0	5656109
Total Bismuth (Bi)	ug/L	<20	<20	20	<2.0	2.0	5656109
Total Boron (B)	ug/L	2800	3500	500	120	50	5656109
Total Cadmium (Cd)	ug/L	<0.10	<0.10	0.10	0.18	0.010	5656109
Total Calcium (Ca)	ug/L	300000	330000	1000	50000	100	5656109
Total Chromium (Cr)	ug/L	<10	<10	10	2.5	1.0	5656109
Total Cobalt (Co)	ug/L	<4.0	<4.0	4.0	1.2	0.40	5656109
Total Copper (Cu)	ug/L	<20	<20	20	5.3	2.0	5656109
Total Iron (Fe)	ug/L	<500	1000	500	3400	50	5656109
Total Lead (Pb)	ug/L	<5.0	<5.0	5.0	9.5	0.50	5656109
Total Magnesium (Mg)	ug/L	780000	980000	1000	6000	100	5656109
Total Manganese (Mn)	ug/L	100	94	20	1600	2.0	5656109
Total Molybdenum (Mo)	ug/L	<20	<20	20	<2.0	2.0	5656109
Total Nickel (Ni)	ug/L	<20	<20	20	2.1	2.0	5656109
Total Phosphorus (P)	ug/L	<1000	<1000	1000	140	100	5656109
Total Potassium (K)	ug/L	240000	290000	1000	2700	100	5656109
Total Selenium (Se)	ug/L	<10	<10	10	<1.0	1.0	5656109
Total Silver (Ag)	ug/L	<1.0	<1.0	1.0	<0.10	0.10	5656109
Total Sodium (Na)	ug/L	6600000	8300000	1000	48000	100	5656109
Total Strontium (Sr)	ug/L	5000	5900	20	180	2.0	5656109
Total Thallium (Tl)	ug/L	<1.0	<1.0	1.0	<0.10	0.10	5656109
Total Tin (Sn)	ug/L	<20	<20	20	<2.0	2.0	5656109
Total Titanium (Ti)	ug/L	<20	<20	20	34	2.0	5656109
Total Uranium (U)	ug/L	2.0	2.5	1.0	0.54	0.10	5656109
Total Vanadium (V)	ug/L	<20	<20	20	4.9	2.0	5656109
Total Zinc (Zn)	ug/L	<50	<50	50	30	5.0	5656109
RDL = Reportable Detection I	imit						
QC Batch = Quality Control B	atch						

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		HHS869		HHT084	HHT085	HHT086	HHT087	HHT088		
Sampling Date		2018/07/25		2018/07/25	2018/07/25	2018/07/25	2018/07/25	2018/07/25		
	UNITS	NRC-1-SW	QC Batch	SRC-1-SW	COB-A-SW	COB-4-SW	COB-6-SW	WB-1-SW	RDL	QC Batch
Polyaromatic Hydrocarbons	;									
1-Methylnaphthalene	ug/L	<0.050	5656858	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5655463
2-Methylnaphthalene	ug/L	<0.050	5656858	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5655463
Acenaphthene	ug/L	<0.010	5656858	<0.010	<0.010	0.011	0.012	<0.010	0.010	5655463
Acenaphthylene	ug/L	<0.010	5656858	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Anthracene	ug/L	<0.010	5656858	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Benzo(a)anthracene	ug/L	<0.010	5656858	0.024	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Benzo(a)pyrene	ug/L	<0.010	5656858	0.034	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Benzo(b)fluoranthene	ug/L	<0.010	5656858	0.036	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Benzo(b/j)fluoranthene	ug/L	<0.020	5646544	0.055	<0.020	<0.020	<0.020	<0.020	0.020	5646544
Benzo(g,h,i)perylene	ug/L	<0.010	5656858	0.028	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Benzo(j)fluoranthene	ug/L	<0.010	5656858	0.019	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Benzo(k)fluoranthene	ug/L	<0.010	5656858	0.022	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Chrysene	ug/L	<0.010	5656858	0.034	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Dibenz(a,h)anthracene	ug/L	<0.010	5656858	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Fluoranthene	ug/L	<0.010	5656858	0.073	<0.010	0.011	<0.010	0.018	0.010	5655463
Fluorene	ug/L	<0.010	5656858	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	5656858	0.018	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Naphthalene	ug/L	<0.20	5656858	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5655463
Perylene	ug/L	<0.010	5656858	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Phenanthrene	ug/L	<0.010	5656858	0.047	<0.010	<0.010	<0.010	0.023	0.010	5655463
Pyrene	ug/L	0.010	5656858	0.060	<0.010	<0.010	<0.010	<0.010	0.010	5655463
Surrogate Recovery (%)										
D10-Anthracene	%	124	5656858	93	98	94	101	87		5655463
D14-Terphenyl	%	103	5656858	88	100	102	113	97		5655463
D8-Acenaphthylene	%	95	5656858	95	96	97	88	76		5655463
RDL = Reportable Detection QC Batch = Quality Control B										

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		HHT089	HHT090		HHT091		
Sampling Date		2018/07/25	2018/07/25		2018/07/25		
	UNITS	NARROWS	BP-1-SW	QC Batch	FD-08	RDL	QC Batch
Polyaromatic Hydrocarbons							
1-Methylnaphthalene	ug/L	0.085	<0.050	5655463	<0.050	0.050	5656858
2-Methylnaphthalene	ug/L	<0.050	<0.050	5655463	<0.050	0.050	5656858
Acenaphthene	ug/L	0.11	0.028	5655463	<0.010	0.010	5656858
Acenaphthylene	ug/L	0.10	0.033	5655463	<0.010	0.010	5656858
Anthracene	ug/L	<0.010	<0.010	5655463	<0.010	0.010	5656858
Benzo(a)anthracene	ug/L	<0.010	<0.010	5655463	0.018	0.010	5656858
Benzo(a)pyrene	ug/L	<0.010	<0.010	5655463	0.013	0.010	5656858
Benzo(b)fluoranthene	ug/L	<0.010	<0.010	5655463	0.023	0.010	5656858
Benzo(b/j)fluoranthene	ug/L	<0.020	<0.020	5646544	0.037	0.020	5646544
Benzo(g,h,i)perylene	ug/L	<0.010	<0.010	5655463	0.017	0.010	5656858
Benzo(j)fluoranthene	ug/L	<0.010	<0.010	5655463	0.014	0.010	5656858
Benzo(k)fluoranthene	ug/L	<0.010	<0.010	5655463	0.012	0.010	5656858
Chrysene	ug/L	<0.010	<0.010	5655463	0.028	0.010	5656858
Dibenz(a,h)anthracene	ug/L	<0.010	<0.010	5655463	<0.010	0.010	5656858
Fluoranthene	ug/L	0.030	0.014	5655463	0.052	0.010	5656858
Fluorene	ug/L	0.098	0.036	5655463	<0.010	0.010	5656858
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	<0.010	5655463	0.013	0.010	5656858
Naphthalene	ug/L	0.41	<0.20	5655463	<0.20	0.20	5656858
Perylene	ug/L	<0.010	<0.010	5655463	<0.010	0.010	5656858
Phenanthrene	ug/L	0.067	0.028	5655463	0.032	0.010	5656858
Pyrene	ug/L	0.013	<0.010	5655463	0.048	0.010	5656858
Surrogate Recovery (%)							
D10-Anthracene	%	89	90	5655463	110		5656858
D14-Terphenyl	%	105	96	5655463	105		5656858
D8-Acenaphthylene	%	92	86	5655463	86		5656858
RDL = Reportable Detection I QC Batch = Quality Control B							
QC BALLII – QUAIILY CONTROL B	atti						

Maxxam Job #: B8I7512 Report Date: 2018/08/09 Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

GENERAL COMMENTS

Sample HHT088 [WB-1-SW] : Poor RCAp Ion Balance due to sample matrix.

Sample HHT089 [NARROWS] : Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix.

Sample HHT090 [BP-1-SW] : Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix.

Results relate only to the items tested.

Maxxam Job #: B8I7512 Report Date: 2018/08/09 **Dillon Consulting Limited** Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

QUALITY ASSURANCE REPORT

QA/QC Batch	Init		Daramatar	Data Apaluzod	Value	Pacovary		OC Limite
5655463	Init KKE	QC Type Matrix Spike [HHT085-02]	Parameter D10-Anthracene	Date Analyzed 2018/08/04	Value	Recovery 90	UNITS %	QC Limits 50 - 130
5055405	KKL		D14-Terphenyl	2018/08/04		111	%	50 - 130
			D8-Acenaphthylene	2018/08/04		96	%	50 - 130
			1-Methylnaphthalene	2018/08/04		96	%	50 - 130
				2018/08/04		103		50 - 130
			2-Methylnaphthalene			103	%	50 - 130 50 - 130
			Acenaphthene	2018/08/04 2018/08/04		100	%	50 - 130 50 - 130
			Acenaphthylene Anthracene					
				2018/08/04		103		50 - 130
			Benzo(a)anthracene	2018/08/04		89		50 - 130
			Benzo(a)pyrene	2018/08/04		95		50 - 130
			Benzo(b)fluoranthene	2018/08/04		120		50 - 130
			Benzo(g,h,i)perylene	2018/08/04		113		50 - 130
			Benzo(j)fluoranthene	2018/08/04		104		50 - 130
			Benzo(k)fluoranthene	2018/08/04		118		50 - 130
			Chrysene	2018/08/04		98		50 - 130
			Dibenz(a,h)anthracene	2018/08/04		108		50 - 130
			Fluoranthene	2018/08/04		105		50 - 130
			Fluorene	2018/08/04		104		50 - 130
			Indeno(1,2,3-cd)pyrene	2018/08/04		109		50 - 130
			Naphthalene	2018/08/04		96		50 - 130
			Perylene	2018/08/04		99		50 - 130
			Phenanthrene	2018/08/04		98		50 - 130
			Pyrene	2018/08/04		104	%	50 - 130
5655463	KKE	Spiked Blank	D10-Anthracene	2018/08/04		94	%	50 - 130
			D14-Terphenyl	2018/08/04		106	%	50 - 130
			D8-Acenaphthylene	2018/08/04		92	%	50 - 130
			1-Methylnaphthalene	2018/08/04		96	%	50 - 130
			2-Methylnaphthalene	2018/08/04		101	%	50 - 130
			Acenaphthene	2018/08/04		99	%	50 - 130
			Acenaphthylene	2018/08/04		102	%	50 - 130
			Anthracene	2018/08/04		110	%	50 - 130
			Benzo(a)anthracene	2018/08/04		97	%	50 - 130
			Benzo(a)pyrene	2018/08/04		105	%	50 - 130
			Benzo(b)fluoranthene	2018/08/04		118	%	50 - 130
			Benzo(g,h,i)perylene	2018/08/04		114	%	50 - 130
			Benzo(j)fluoranthene	2018/08/04		104	%	50 - 130
			Benzo(k)fluoranthene	2018/08/04		112	%	50 - 130
			Chrysene	2018/08/04		94	%	50 - 130
			Dibenz(a,h)anthracene	2018/08/04		96	% % % % % % %	50 - 130
			Fluoranthene	2018/08/04		100	%	50 - 130
			Fluorene	2018/08/04		103	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/08/04		98	%	50 - 130
			Naphthalene	2018/08/04		99	%	50 - 130
			Perylene	2018/08/04		106	%	50 - 130
			Phenanthrene	2018/08/04		106	%	50 - 130
			Pyrene	2018/08/04		98	%	50 - 130
5655463	KKE	Method Blank	D10-Anthracene	2018/08/04		92		50 - 130
			D14-Terphenyl	2018/08/04		105		50 - 130
			D8-Acenaphthylene	2018/08/04		93		50 - 130
			1-Methylnaphthalene	2018/08/04	<0.050			
			2-Methylnaphthalene	2018/08/04	<0.050			
			Acenaphthene	2018/08/04	<0.030			
			Acenaphthylene	2010/00/04	-0.010		∽6/ ⊑	

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Anthracene	2018/08/04	<0.010	/	ug/L	
			Benzo(a)anthracene	2018/08/04	<0.010		ug/L	
			Benzo(a)pyrene	2018/08/04	<0.010		ug/L	
			Benzo(b)fluoranthene	2018/08/04	<0.010		ug/L	
			Benzo(g,h,i)perylene	2018/08/04	<0.010		ug/L	
			Benzo(j)fluoranthene	2018/08/04	<0.010		ug/L	
			Benzo(k)fluoranthene	2018/08/04	<0.010		ug/L	
			Chrysene	2018/08/04	<0.010		ug/L	
			Dibenz(a,h)anthracene	2018/08/04	<0.010		ug/L	
			Fluoranthene	2018/08/04	< 0.010		ug/L	
			Fluorene	2018/08/04	< 0.010		ug/L	
			Indeno(1,2,3-cd)pyrene	2018/08/04	< 0.010		ug/L	
			Naphthalene	2018/08/04	<0.20		ug/L	
			Perylene	2018/08/04	<0.010		ug/L	
			Phenanthrene	2018/08/04	<0.010		ug/L	
			Pyrene	2018/08/04	<0.010		ug/L	
5655463	KKE	RPD [HHT084-02]	1-Methylnaphthalene	2018/08/04	<0.010 NC		ч <u>е</u> , г %	40
0000400	KKL		2-Methylnaphthalene	2018/08/04	NC		%	40
			Acenaphthene	2018/08/04	NC		%	40 40
			Acenaphthylene	2018/08/04	NC		%	40
			Anthracene	2018/08/04	NC		%	40 40
			Benzo(a)anthracene	2018/08/04	19		%	40 40
			Benzo(a)pyrene	2018/08/04	30		%	40 40
					27		%	40 40
			Benzo(b)fluoranthene	2018/08/04	29		%	40 40
			Benzo(g,h,i)perylene	2018/08/04 2018/08/04	29 15		%	40 40
			Benzo(j)fluoranthene		24		%	40 40
			Benzo(k)fluoranthene	2018/08/04				
			Chrysene	2018/08/04	17 NG		%	40
			Dibenz(a,h)anthracene	2018/08/04	NC		%	40
			Fluoranthene	2018/08/04	23		%	40
			Fluorene	2018/08/04	NC		%	40
			Indeno(1,2,3-cd)pyrene	2018/08/04	18		%	40
			Naphthalene	2018/08/04	NC		%	40
			Perylene	2018/08/04	NC		%	40
			Phenanthrene	2018/08/04	36		%	40
			Pyrene	2018/08/04	24		%	40
5656109	BAN	Matrix Spike	Total Aluminum (Al)	2018/07/31		95	%	80 - 120
			Total Antimony (Sb)	2018/07/31		99	%	80 - 120
			Total Arsenic (As)	2018/07/31		97	%	80 - 120
			Total Barium (Ba)	2018/07/31		98	%	80 - 120
			Total Beryllium (Be)	2018/07/31		101	%	80 - 120
			Total Bismuth (Bi)	2018/07/31		100	%	80 - 120
			Total Boron (B)	2018/07/31		104	%	80 - 120
			Total Cadmium (Cd)	2018/07/31		103	%	80 - 120
			Total Calcium (Ca)	2018/07/31		102	%	80 - 120
			Total Chromium (Cr)	2018/07/31		96	%	80 - 120
			Total Cobalt (Co)	2018/07/31		97	%	80 - 120
			Total Copper (Cu)	2018/07/31		96	%	80 - 120
			Total Iron (Fe)	2018/07/31		101	%	80 - 120
			Total Lead (Pb)	2018/07/31		98	%	80 - 120
			Total Magnesium (Mg)	2018/07/31		103	%	80 - 120
			Total Manganese (Mn)	2018/07/31		97	%	80 - 120
			Total Molybdenum (Mo)	2018/07/31		101	%	80 - 120

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Nickel (Ni)	2018/07/31		97	%	80 - 120
			Total Phosphorus (P)	2018/07/31		103	%	80 - 120
			Total Potassium (K)	2018/07/31		101	%	80 - 120
			Total Selenium (Se)	2018/07/31		97	%	80 - 120
			Total Silver (Ag)	2018/07/31		99	%	80 - 120
			Total Sodium (Na)	2018/07/31		95	%	80 - 120
			Total Strontium (Sr)	2018/07/31		99	%	80 - 120
			Total Thallium (TI)	2018/07/31		101	%	80 - 120
			Total Tin (Sn)	2018/07/31		104	%	80 - 120
			Total Titanium (Ti)	2018/07/31		99	%	80 - 120
			Total Uranium (U)	2018/07/31		104	%	80 - 120
			Total Vanadium (V)	2018/07/31		99	%	80 - 120
			Total Zinc (Zn)	2018/07/31		98	%	80 - 120
5656109	BAN	Spiked Blank	Total Aluminum (Al)	2018/07/31		97	%	80 - 120
		-	Total Antimony (Sb)	2018/07/31		100	%	80 - 120
			Total Arsenic (As)	2018/07/31		96	%	80 - 120
			Total Barium (Ba)	2018/07/31		97	%	80 - 120
			Total Beryllium (Be)	2018/07/31		102	%	80 - 120
			Total Bismuth (Bi)	2018/07/31		102	%	80 - 120
			Total Boron (B)	2018/07/31		104	%	80 - 120
			Total Cadmium (Cd)	2018/07/31		103	%	80 - 120
			Total Calcium (Ca)	2018/07/31		103	%	80 - 120
			Total Chromium (Cr)	2018/07/31		97	%	80 - 120
			Total Cobalt (Co)	2018/07/31		98	%	80 - 120
			Total Copper (Cu)	2018/07/31		98	%	80 - 120
			Total Iron (Fe)	2018/07/31		102	%	80 - 120
			Total Lead (Pb)	2018/07/31		98	%	80 - 120
			Total Magnesium (Mg)	2018/07/31		102	%	80 - 120
			Total Manganese (Mn)	2018/07/31		99	%	80 - 120
			Total Molybdenum (Mo)	2018/07/31		104	%	80 - 120
			Total Nickel (Ni)	2018/07/31		99	%	80 - 120
			Total Phosphorus (P)	2018/07/31		103	%	80 - 120
			Total Potassium (K)	2018/07/31		103	%	80 - 120
			Total Selenium (Se)	2018/07/31		99	%	80 - 120
			Total Silver (Ag)	2018/07/31		99	%	80 - 120
			Total Sodium (Na)	2018/07/31		98	%	80 - 120
			Total Strontium (Sr)	2018/07/31		101	%	80 - 120
			Total Thallium (TI)	2018/07/31		101	%	80 - 120
			Total Tin (Sn)	2018/07/31		100	%	80 - 120
			Total Titanium (Ti)	2018/07/31		102	%	80 - 120 80 - 120
			Total Uranium (U)	2018/07/31		102	%	80 - 120 80 - 120
			Total Vanadium (V)	2018/07/31		103		80 - 120 80 - 120
			Total Zinc (Zn)	2018/07/31		98	% %	80 - 120 80 - 120
5656109	BAN	Method Blank	Total Aluminum (Al)	2018/07/31	<5.0	98	ug/L	80 - 120
3030103	DAN	Method Blank	Total Antimony (Sb)	2018/07/31	<1.0			
			Total Arsenic (As)	2018/07/31	<1.0		ug/L	
							ug/L	
			Total Barium (Ba) Total Beryllium (Be)	2018/07/31 2018/07/31	<1.0 <1.0		ug/L	
							ug/L	
			Total Bismuth (Bi)	2018/07/31	<2.0		ug/L	
			Total Boron (B)	2018/07/31	<50		ug/L	
			Total Cadmium (Cd)	2018/07/31	<0.010		ug/L	
			Total Calcium (Ca)	2018/07/31	<100		ug/L	
			Total Chromium (Cr)	2018/07/31	<1.0		ug/L	

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cobalt (Co)	2018/07/31	<0.40		ug/L	
			Total Copper (Cu)	2018/07/31	<2.0		ug/L	
			Total Iron (Fe)	2018/07/31	<50		ug/L	
			Total Lead (Pb)	2018/07/31	<0.50		ug/L	
			Total Magnesium (Mg)	2018/07/31	<100		ug/L	
			Total Manganese (Mn)	2018/07/31	<2.0		ug/L	
			Total Molybdenum (Mo)	2018/07/31	<2.0		ug/L	
			Total Nickel (Ni)	2018/07/31	<2.0		ug/L	
			Total Phosphorus (P)	2018/07/31	<100		ug/L	
			Total Potassium (K)	2018/07/31	<100		ug/L	
			Total Selenium (Se)	2018/07/31	<1.0		ug/L	
			Total Silver (Ag)	2018/07/31	<0.10		ug/L	
			Total Sodium (Na)	2018/07/31	<100		ug/L	
			Total Strontium (Sr)	2018/07/31	<2.0		ug/L	
			Total Thallium (Tl)	2018/07/31	<0.10		ug/L	
			Total Tin (Sn)	2018/07/31	<2.0		ug/L	
			Total Titanium (Ti)	2018/07/31	<2.0		ug/L	
			Total Uranium (U)	2018/07/31	<0.10		ug/L	
			Total Vanadium (V)	2018/07/31	<2.0		ug/L	
			Total Zinc (Zn)	2018/07/31	<5.0		ug/L	
5656109	BAN	RPD	Total Aluminum (Al)	2018/07/31	2.6		%	20
5656473	LMP	Matrix Spike [HHS869-05]	Total Organic Carbon (C)	2018/07/31		96	%	85 - 115
5656473	LMP	Spiked Blank	Total Organic Carbon (C)	2018/07/31		97	%	80 - 120
5656473	LMP	Method Blank	Total Organic Carbon (C)	2018/07/31	<0.50		mg/L	
5656473	LMP	RPD [HHS869-05]	Total Organic Carbon (C)	2018/07/31	1.6		%	15
5656507	CCR	Matrix Spike [HHT084-01]	Total Mercury (Hg)	2018/08/01		98	%	80 - 120
5656507	CCR	Spiked Blank	Total Mercury (Hg)	2018/08/01		103	%	80 - 120
5656507	CCR	Method Blank	Total Mercury (Hg)	2018/08/01	<0.013		ug/L	
5656507	CCR	RPD [HHS869-01]	Total Mercury (Hg)	2018/08/01	NC		%	20
5656627	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2018/08/01		NC	%	80 - 120
5656627	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2018/08/01		106	%	80 - 120
5656627	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2018/08/01	<0.050		mg/L	
5656627	MCN	RPD	Nitrogen (Ammonia Nitrogen)	2018/08/01	0.47		%	20
5656858	ASW	Matrix Spike [HHT091-02]	D10-Anthracene	2018/08/05		114	%	50 - 130
			D14-Terphenyl	2018/08/05		89	%	50 - 130
			D8-Acenaphthylene	2018/08/05		85	%	50 - 130
			1-Methylnaphthalene	2018/08/05		84	%	50 - 130
			2-Methylnaphthalene	2018/08/05		93	%	50 - 130
			Acenaphthene	2018/08/05		95	%	50 - 130
			Acenaphthylene	2018/08/05		85	%	50 - 130
			Anthracene	2018/08/05		78	%	50 - 130
			Benzo(a)anthracene	2018/08/05		74	%	50 - 130
			Benzo(a)pyrene	2018/08/05		79	%	50 - 130
			Benzo(b)fluoranthene	2018/08/05		87	%	50 - 130
			Benzo(g,h,i)perylene	2018/08/05		65	%	50 - 130
			Benzo(j)fluoranthene	2018/08/05		78	%	50 - 130
			Benzo(k)fluoranthene	2018/08/05		80	%	50 - 130
			Chrysene	2018/08/05		87	%	50 - 130
			Dibenz(a,h)anthracene	2018/08/05		63	%	50 - 130
			Fluoranthene	2018/08/05		89	%	50 - 130
			Fluorene	2018/08/05		98	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/08/05		59	%	50 - 130
			Naphthalene	2018/08/05		85	%	50 - 130

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Perylene	2018/08/05		77	%	50 - 130
			Phenanthrene	2018/08/05		89	%	50 - 130
			Pyrene	2018/08/05		92	%	50 - 130
5656858	ASW	Spiked Blank	D10-Anthracene	2018/08/04		92	%	50 - 130
			D14-Terphenyl	2018/08/04		101	%	50 - 130
			D8-Acenaphthylene	2018/08/04		91	%	50 - 130
			1-Methylnaphthalene	2018/08/04		97	%	50 - 130
			2-Methylnaphthalene	2018/08/04		103	%	50 - 130
			Acenaphthene	2018/08/04		106	%	50 - 130
			Acenaphthylene	2018/08/04		91	%	50 - 130
			Anthracene	2018/08/04		84	%	50 - 130
			Benzo(a)anthracene	2018/08/04		79	%	50 - 130
			Benzo(a)pyrene	2018/08/04		114	%	50 - 130
			Benzo(b)fluoranthene	2018/08/04		125	%	50 - 130
			Benzo(g,h,i)perylene	2018/08/04		129	%	50 - 130
			Benzo(j)fluoranthene	2018/08/04		108	%	50 - 130
			Benzo(k)fluoranthene	2018/08/04		124	%	50 - 130
			Chrysene	2018/08/04		88	%	50 - 130
			Dibenz(a,h)anthracene	2018/08/04		118	%	50 - 130
			Fluoranthene	2018/08/04		90	%	50 - 130
			Fluorene	2018/08/04		115	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/08/04		114	%	50 - 130
			Naphthalene	2018/08/04		102	%	50 - 130
			Perylene	2018/08/04		109	%	50 - 130
			Phenanthrene	2018/08/04		95	%	50 - 130
			Pyrene	2018/08/04		95	%	50 - 130
5656858	ASW	Method Blank	D10-Anthracene	2018/08/04		100	%	50 - 130
			D14-Terphenyl	2018/08/04		93	%	50 - 130
			D8-Acenaphthylene	2018/08/04		74	%	50 - 130
			1-Methylnaphthalene	2018/08/04	<0.050		ug/L	
			2-Methylnaphthalene	2018/08/04	<0.050		ug/L	
			Acenaphthene	2018/08/04	<0.010		ug/L	
			Acenaphthylene	2018/08/04	<0.010		ug/L	
			Anthracene	2018/08/04	<0.010		ug/L	
			Benzo(a)anthracene	2018/08/04	<0.010		ug/L	
			Benzo(a)pyrene	2018/08/04	<0.010		ug/L	
			Benzo(b)fluoranthene	2018/08/04	<0.010		ug/L	
			Benzo(g,h,i)perylene	2018/08/04	<0.010		ug/L	
			Benzo(j)fluoranthene	2018/08/04	<0.010		ug/L	
			Benzo(k)fluoranthene	2018/08/04	<0.010		ug/L	
			Chrysene	2018/08/04	<0.010		ug/L	
			Dibenz(a,h)anthracene	2018/08/04	<0.010		ug/L	
			Fluoranthene	2018/08/04	<0.010		ug/L	
			Fluorene	2018/08/04	< 0.010		ug/L	
			Indeno(1,2,3-cd)pyrene	2018/08/04	<0.010		ug/L	
			Naphthalene	2018/08/04	<0.20		ug/L	
			Perylene	2018/08/04	< 0.010		ug/L	
			Phenanthrene	2018/08/04	< 0.010		ug/L	
			Pyrene	2018/08/04	< 0.010		ug/L	
5656858	ASW	RPD [HHS869-02]	1-Methylnaphthalene	2018/08/04	NC		%	40
			2-Methylnaphthalene	2018/08/04	NC		%	40
			Acenaphthene	2018/08/04	NC		%	40
			Acenaphthylene	2018/08/04	NC		%	40

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Anthracene	2018/08/04	NC		%	40
			Benzo(a)anthracene	2018/08/04	NC		%	40
			Benzo(a)pyrene	2018/08/04	NC		%	40
			Benzo(b)fluoranthene	2018/08/04	NC		%	40
			Benzo(g,h,i)perylene	2018/08/04	NC		%	40
			Benzo(j)fluoranthene	2018/08/04	NC		%	40
			Benzo(k)fluoranthene	2018/08/04	NC		%	40
			Chrysene	2018/08/04	NC		%	40
			Dibenz(a,h)anthracene	2018/08/04	NC		%	40
			Fluoranthene	2018/08/04	NC		%	40
			Fluorene	2018/08/04	NC		%	40
			Indeno(1,2,3-cd)pyrene	2018/08/04	NC		%	40
			Naphthalene	2018/08/04	NC		%	40
			Perylene	2018/08/04	NC		%	40
			Phenanthrene	2018/08/04	NC		%	40
			Pyrene	2018/08/04	1.0		%	40
5657551	LMP	Matrix Spike	Total Organic Carbon (C)	2018/08/01		103	%	85 - 115
5657551	LMP	Spiked Blank	Total Organic Carbon (C)	2018/08/01		100	%	80 - 120
5657551	LMP	Method Blank	Total Organic Carbon (C)	2018/08/01	<0.50		mg/L	
5657551	LMP	RPD	Total Organic Carbon (C)	2018/08/01	0.63		%	15
5658382	NHU	QC Standard	рН	2018/08/01		100	%	97 - 103
5658382	NHU	RPD	рН	2018/08/01	1.3		%	N/A
5658384	NHU	Spiked Blank	Conductivity	2018/08/01		103	%	80 - 120
5658384	NHU	Method Blank	Conductivity	2018/08/01	1.6, RDL=1.0		uS/cm	
5658384	NHU	RPD	Conductivity	2018/08/01	0.76		%	25
5658397	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2018/08/01	0.70	NC	%	25 80 - 120
5658397	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2018/08/01		99	%	80 - 120
5658397	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2018/08/01	<5.0	35	mg/L	80 - 120
5658397	NRG	RPD	Total Alkalinity (Total as CaCO3)	2018/08/01	5.3		111g/ L %	25
5658398	MCN	Matrix Spike	Dissolved Chloride (Cl-)	2018/08/01	5.5	103	%	80 - 120
5658398	MCN	QC Standard	Dissolved Chloride (Cl-)	2018/08/01		103	%	80 - 120
5658398	MCN	Spiked Blank	Dissolved Chloride (Cl-)	2018/08/02		98	%	80 - 120
5658398	MCN	Method Blank	Dissolved Chloride (Cl-)	2018/08/01	<1.0	90		ou - 120
		RPD	Dissolved Chloride (Cl-)	2018/08/01			mg/L	25
5658398 5658399	MCN MCN	Matrix Spike	Dissolved Chloride (CI-) Dissolved Sulphate (SO4)	2018/08/01	0.27	96	% %	25 80 - 120
5658399	MCN	-	Dissolved Sulphate (SO4)	2018/08/01		90 97	%	80 - 120
5658399		•	Dissolved Sulphate (SO4)		<2.0	97		80 - 120
5658399		Method Blank		2018/08/01	<2.0		mg/L	25
5658400	MCN	RPD Matrix Spike	Dissolved Sulphate (SO4) Reactive Silica (SiO2)	2018/08/01 2018/08/01	1.3	NC	%	25
	MCN	Matrix Spike				NC 01	%	80 - 120
5658400	MCN	Spiked Blank	Reactive Silica (SiO2)	2018/08/01	-0.50	91	%	80 - 120
5658400	MCN	Method Blank	Reactive Silica (SiO2)	2018/08/01	<0.50		mg/L	25
5658400	MCN	RPD	Reactive Silica (SiO2)	2018/08/01	2.5	104	%	25
5658401	MCN	Spiked Blank	Colour	2018/08/01		104	%	80 - 120
5658401	MCN	Method Blank	Colour	2018/08/01	<5.0		TCU	•
5658401	MCN	RPD	Colour	2018/08/01	NC	~ .	%	20
5658416	MCN	Matrix Spike	Orthophosphate (P)	2018/08/01		94	%	80 - 120
5658416	MCN	Spiked Blank	Orthophosphate (P)	2018/08/01		102	%	80 - 120
5658416	MCN	Method Blank	Orthophosphate (P)	2018/08/01	<0.010		mg/L	
5658416	MCN	RPD	Orthophosphate (P)	2018/08/01	2.1		%	25
5658417	MCN	Matrix Spike	Nitrate + Nitrite (N)	2018/08/01		93	%	80 - 120
5658417	MCN	Spiked Blank	Nitrate + Nitrite (N)	2018/08/01		97	%	80 - 120
5658417	MCN	Method Blank	Nitrate + Nitrite (N)	2018/08/01	<0.050		mg/L	

Report Date: 2018/08/09

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5658417	MCN	RPD	Nitrate + Nitrite (N)	2018/08/01	0.64		%	25
5658418	NRG	Matrix Spike	Nitrite (N)	2018/08/02		89	%	80 - 120
5658418	NRG	Spiked Blank	Nitrite (N)	2018/08/02		96	%	80 - 120
5658418	NRG	Method Blank	Nitrite (N)	2018/08/02	<0.010		mg/L	
5658418	NRG	RPD	Nitrite (N)	2018/08/02	NC		%	20
5658518	NHU	QC Standard	Turbidity	2018/08/01		100	%	80 - 120
5658518	NHU	Spiked Blank	Turbidity	2018/08/01		99	%	80 - 120
5658518	NHU	Method Blank	Turbidity	2018/08/01	<0.10		NTU	
5658518	NHU	RPD	Turbidity	2018/08/01	6.9		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2018/08/09

Dillon Consulting Limited Client Project #: 14-1360 Site Location: NS LANDS SW PROGRAM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike Mac Gille

Mike MacGillivray, Scientific Specialist (Inorganics)

Kosmarie MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

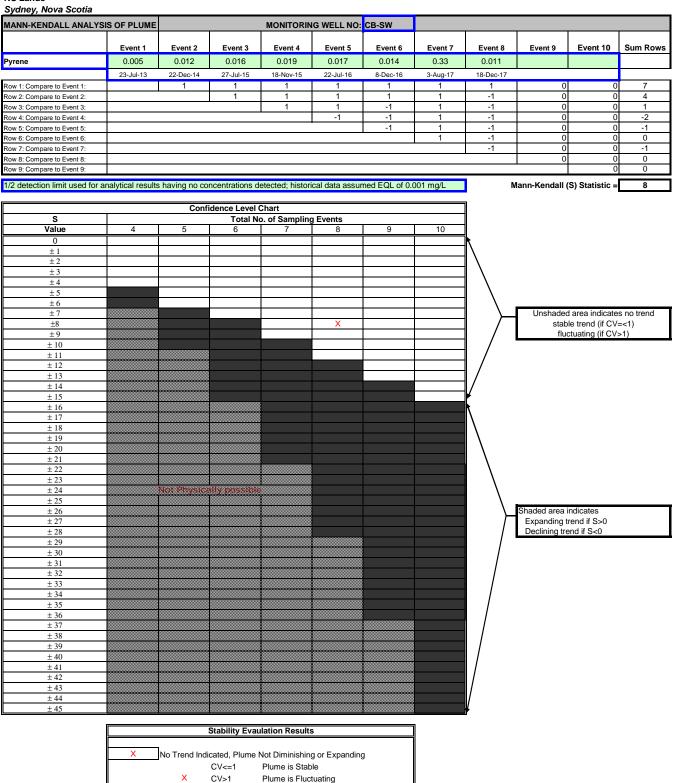
APPENDIX D MANN-KENDALL TABLES

Summary Table for Mann Kendall Plume Stability Analysis LTMM Surface Water Monitoring NSIands Sydney, Nova Scotia

Well	Parameter	Trend (at 90% UCL) Declining Stable Expanding Fluctuating		S Statistic	CV	Number of Events	Number of Non-detects	Maximum Concentration	Comment		
		Declining		Expanding F	luctuating	-					
CB-SW	Anthracene		Х			0	0.00	8	8	0.005	All non detect.
CB-SW	Pyrene				Х	8	2.11	8	1	0.33	Fluctating with no trend.
CB-SW	Benzo(a)pyrene		Х			0	0.00	8	8	0.005	All non detect.
CB-SW	Cadmium		Х			-5	0.50	8	3	0.018	
CB-SW	Strontium		Х			-3	0.47	8	0	340	
CB-SW	Zinc		Х			-8	0.60	8	5	9	
CB-SW	Boron		Х			0	0.00	8	8	25	All non detect.
CB-SW	Sulphate		Х			3	0.43	8	0	26	
NRC-1-SW	Anthracene		Х			0	1.00	8	5	0.037	
NRC-1-SW	Pyrene				х	2	1.63	8	4	0.14	Fluctuating with no trend.
NRC-1-SW	Benzo(a)pyrene				х	1	1.69	8	6	0.075	Generally non detect with a generally expanding trend.
NRC-1-SW	Cadmium				х	-11	1.27	8	0	0.14	Fluctuating with no trend.
NRC-1-SW	Strontium	Х				-6	0.30	8	0	64.7	· · · · · · · · · · · · · · · · · · ·
NRC-1-SW	Zinc	~			Х	-10	1.08	8	4	27	
NRC-1-SW	Boron		х		X	0	0.00	8	8	25	All non detect.
NRC-1-SW NRC-1-SW	Suphate		x			-7	0.00	8	0	23	All horr detect.
				\vdash							All non detect
SRC-1-SW	Anthracene		X			0	0.00	9	9	0.005	All non detect.
SRC-1-SW	Pyrene		X			14	1.16	9	5	0.06	Generally non detect with a generally expanding trend.
SRC-1-SW	Benzo(a)pyrene		Х			11	0.95	9	6	0.034	
SRC-1-SW	Cadmium				Х	13	1.48	9	2	0.31	
SRC-1-SW	Strontium	L	Х			0	0.11	9	0	190	
SRC-1-SW	Zinc		Х			10	1.36	9	4	50	
SRC-1-SW	Boron		Х			10	0.34	90	0	130	
SRC-1-SW	Sulphate		Х			2	0.11	9	0	54	
COB-4-SW	Anthracene	1			Х	-3	1.98	8	6	0.12	Generally non detect with fluctuation and no trend.
COB-4-SW	Pyrene				х	-6	2.53	8	5	0.74	Generally non detect with fluctuation and no trend.
COB-4-SW	Benzo(a)pyrene				х	-3	2.41	8	6	0.39	Generally non detect with fluctuation and no trend.
COB-4-SW	Cadmium				X	-8	2.25	8	3	0.29	Fluctuating with no trend.
COB-4-SW	Strontium	-	х		Х	5	0.58	8	0	450	n doldating with no trond.
COB-4-SW COB-4-SW			^		x	-10	2.02	8	4	450 96	Thest stimp with a paramethy destining terral
	Zinc		N/		~						Fluctuating with a generally declining trend.
COB-4-SW	Boron		х			4	0.48	8	5	63	
COB-4-SW	Sulphate		Х			3	0.44	8	0	110	
COB-6-SW	Anthracene		Х			-7	0.53	9	7	0.015	
COB-6-SW	Pyrene		Х			-7	0.72	9	3	0.038	
COB-6-SW	Benzo(a)pyrene		Х			1	0.90	9	7	0.027	
COB-6-SW	Cadmium		Х			1	0.52	9	4	0.018	
COB-6-SW	Strontium		Х			-5	0.55	9	0	645	
COB-6-SW	Zinc		Х			-9	0.55	9	7	7.4	
COB-6-SW	Boron		Х			0	0.46	9	5	66	
COB-6-SW	Sulphate		Х			-4	0.52	9	0	170	
WB-1-SW	Anthracene		Х			0	0.00	9	9	0.005	All non detect.
WB-1-SW	Pyrene	1			Х	3	1.70	9	7	0.092	Generally non detect with a generally fluctating trend.
WB-1-SW	Benzo(a)pyrene	1	х			0	0.92	9	8	0.032	y y gororany naoranny dollar
WB-1-SW	Cadmium	t	^	<u> </u>	Х	3	1.20	9	0 1	0.025	Fluctuating with no trend.
WB-1-SW	Strontium	+		++	X	-6	1.20	9	0	4660	Fluctuating with no trend.
WB-1-SW WB-1-SW	Zinc	×		<u> </u>	^	-6 -16	0.94	9	5	4660 25	n uotuating with no trend.
	-	х	v	├ ──┤							
WB-1-SW	Boron	<u> </u>	Х		~	-2	1.89	9	5	2470	Generally non detect with fluctuation and no trend.
WB-1-SW	Sulphate				Х	-1	1.95	9	0	1500	Fluctuating with no trend.
BP-1-SW	Anthracene	L	Х			0	0.00	9	9	0.005	All non detect.
BP-1-SW	Pyrene	1	Х			-8	0.79	9	4	0.036	
BP-1-SW	Benzo(a)pyrene		Х			0	0.00	9	9	0.005	All non detect.
BP-1-SW	Cadmium		Х			-6	0.79	9	4	0.14	
BP-1-SW	Strontium		Х			0	0.74	9	0	6130	
BP-1-SW	Zinc	1	Х			-5	0.65	9	7	41	
BP-1-SW	Boron		Х			-3	0.77	9	0	3700	
BP-1-SW	Sulphate	1	Х			1	0.76	9	0	2000	
Narrows	Anthracene	1	X			-7	0.52	8	7	0.014	
Narrows	Pyrene	1	X			-9	0.54	8	2	0.03	
Narrows	Benzo(a)pyrene	+	X	++		-9	0.04	8	8	0.005	All non detect.
Narrows	Cadmium	+	X	++		4	0.45	8	4	0.005	
		+		├ ──┤							
Narrows	Strontium	+	X	├ ──		3	0.87	8	0	6100	
Narrows	Zinc	<u> </u>	Х	\vdash		-2	0.74	8	4	63	
Narrows	Boron	L	Х			4	0.91	8	0	3600	
Narrows	Sulphate	1	Х			8	0.89	8	0	2000	

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia							-				
MANN-KENDALL ANALYSI	S OF PLUME			MONITORING WELL NO: CB-SW							
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Anthracene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17			
Row 1: Compare to Event 1:		0	0	0	0	0	0	0	0	0	0
Row 2: Compare to Event 2:			0	0	0	0	0	0	0	0	0
Row 3: Compare to Event 3:				0	0	0	0	0	0		
Row 4: Compare to Event 4:					0	0	0	0	0		
Row 5: Compare to Event 5:						0	0	0	0		
Row 6: Compare to Event 6:							0	0	0		
Row 7: Compare to Event 7: Row 8: Compare to Event 8:								U	0		
Row 9: Compare to Event 9:										0	
										•	
1/2 detection limit used for an	nalytical results	s having no co	ncentrations d	etected; histori	ical data assur	ned EQL of 0.0	001 mg/L	IV IV	lann-Kendall	(S) Statistic =	0
<u></u>		Canfi	dence Level	Chart				า			
S		Conn		o. of Sampling				-			
Value	4	5	6	7	8	9	10				
0	•	Ŭ	Ű		X	Ű					
± 1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
± 2											
± 3											
±4] \			
± 5											
± 6								.l ∖ .			
± 7										d area indicate	
±8								/		ole trend (if CV	
± 9 ± 10								. /	tiu	ctuating (if CV	>1)
± 10 ± 11								/			
± 11 ± 12								/			
± 12								1 /			
± 14								1/			
± 15								¥			
± 16								k			
± 17											
± 18											
± 19											
± 20 ± 21											
± 21 ± 22											
± 23											
± 24		Not Physica	ily possible								
± 25									-		
± 26									Shaded area		ľ
± 27									Expanding		
± 28									Declining tr	end if S<0	
± 29											
± 30 ± 31								/			
± 31 ± 32											
± 32 ± 33								1 /			
± 34											
± 35											
± 36								. /			
± 37								/			
± 38								/			
$\frac{\pm 39}{\pm 40}$								/			
± 40 ± 41								/			
± 41 ± 42								/			
± 42 ± 43								1/			
± 44								1/			
± 45								¥			
								-			
			Stability Evau	Ilation Results	S						
	Х	No Trend Indi	cated, Plume I	Not Diminishin	g or Expanding	9					
		Х	CV<=1	Plume is Stab	ble						
		_	CV>1	Plume is Fluc	tuating						
		Trend Is Pres	ent (<u>></u> 90% Cor	nfidence)							

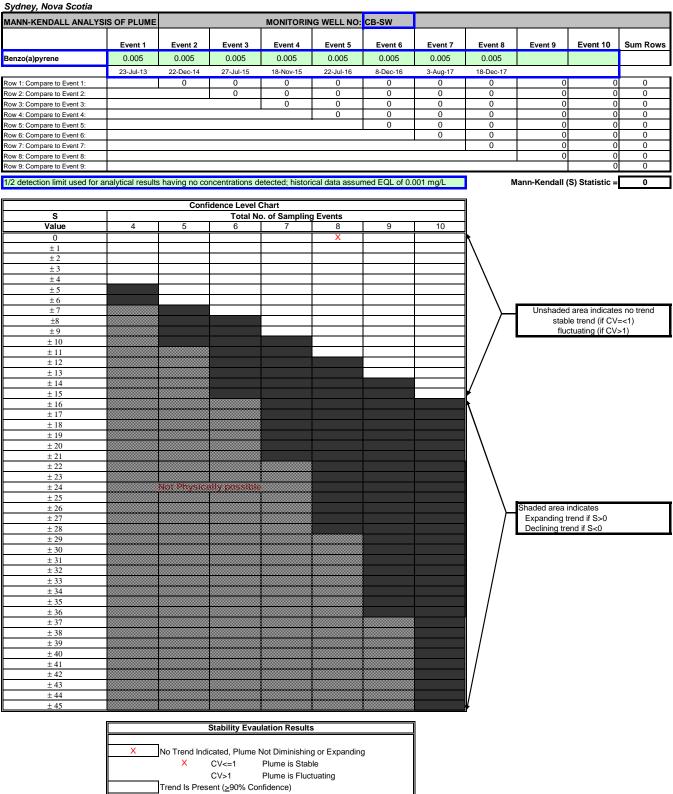

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

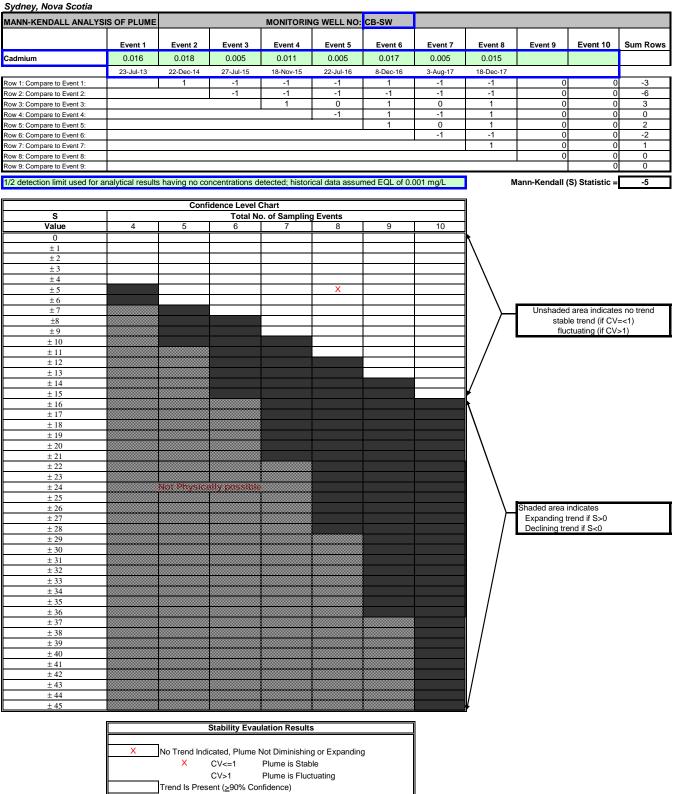

Trend Is Present (\geq 90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

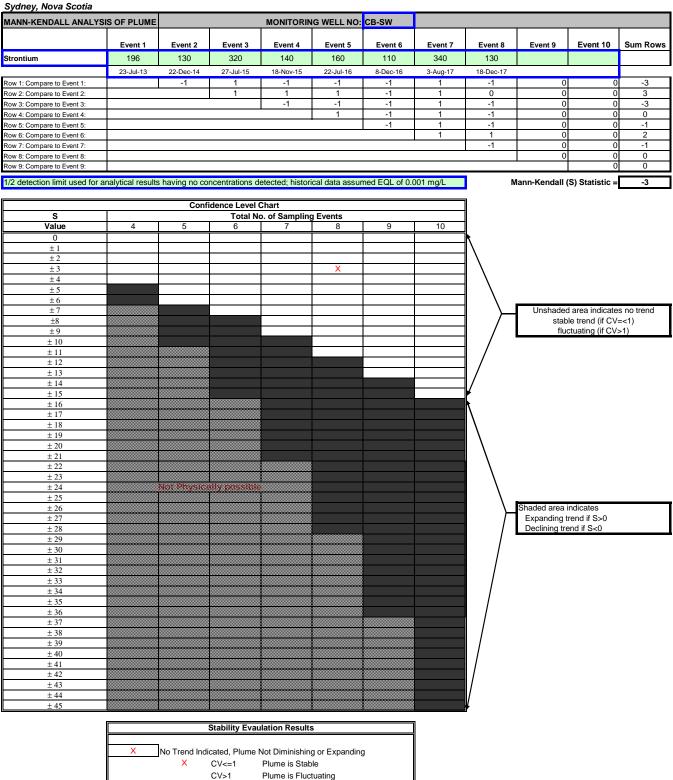

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

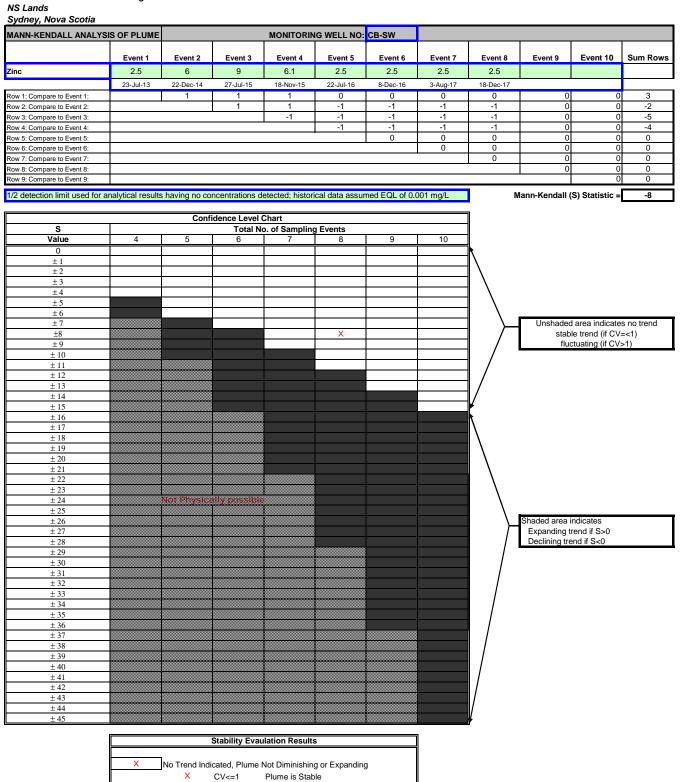

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands



Trend Is Present (≥90% Confidence) S < 0 Diminish

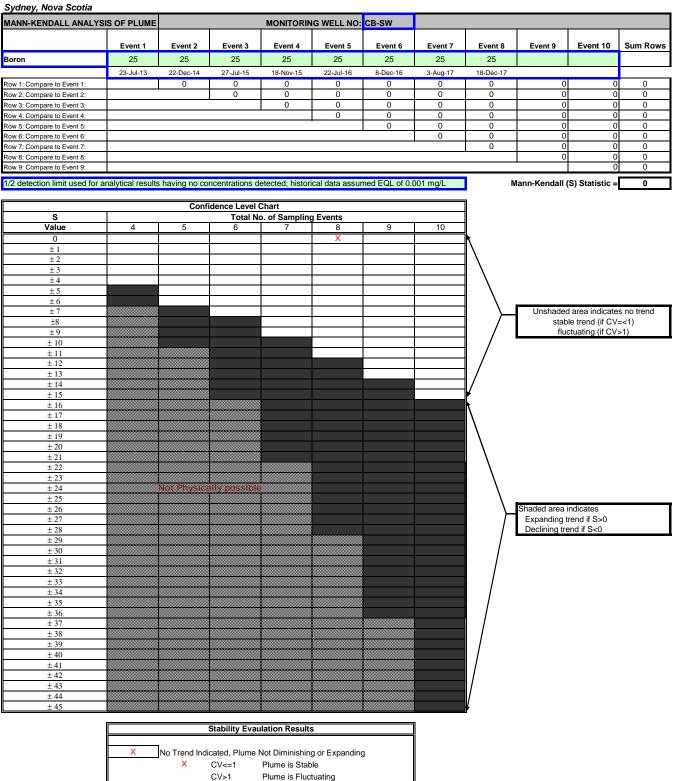
S > 0

Diminishing Plume

LTMM Surface Water Monitoring

CV>1

S > 0


Trend Is Present (≥90% Confidence) S < 0 Diminish

Plume is Fluctuating

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

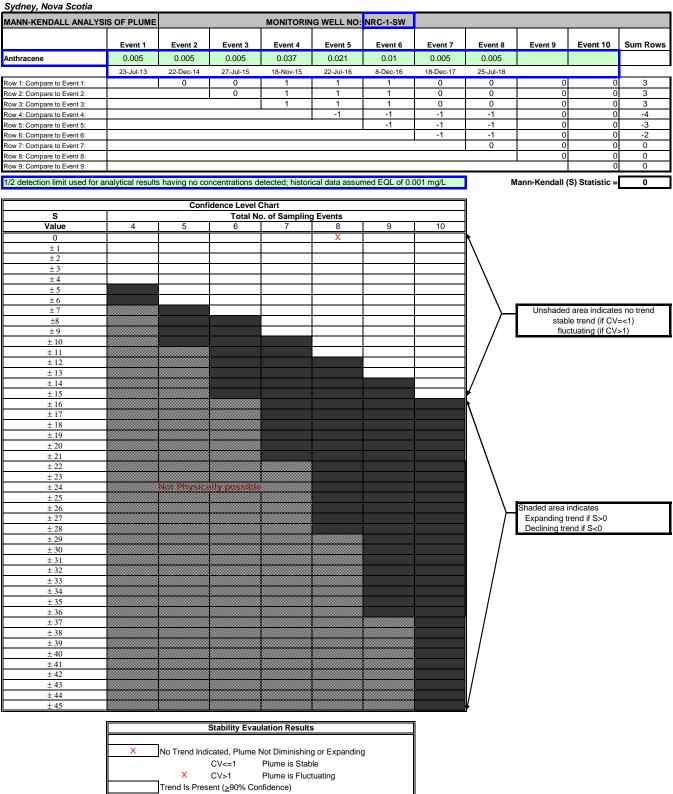
Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia										_	
MANN-KENDALL ANALYS	IS OF PLUME			MONITORI	NG WELL NO:	CB-SW					
	Event 4	Error A	E	E	Event 5	E	E	E	Error A	Event 40	Cum D
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Sulphate	6.5	26	16	24	10	23	12	24			
	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	1	1	
ow 1: Compare to Event 1:	ļ]	1	1	1	1	1	1	1	0		
tow 2: Compare to Event 2:			-1	-1 1	-1 -1	-1 1	-1 -1	-1 1	0		
Row 3: Compare to Event 3: Row 4: Compare to Event 4:	-			I	-1	-1	-1	0	0		
Row 5: Compare to Event 5:						1	1	1	0		
Row 6: Compare to Event 6:							-1	1	0		
tow 7: Compare to Event 7:								1	0	0	1
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:										C	0
/2 detection limit used for a	nalytical results	having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	3
								•			
		Conf	idence Level	Chart				7			
S				o. of Samplin	g Events						
Value	4	5	6	7	8	9	10				
0								R.			
± 1 + 2								1			
± 2 ± 3	<u> </u>				X			\			
± 3 ± 4					^						
± 5											
± 6											
±7										d area indicate	
±8										e trend (if CV	
± 9								. /	flu	ctuating (if CV	>1)
$\frac{\pm 10}{\pm 11}$								/			
± 11 ± 12								/			
± 13								1/			
± 14								1/			
± 15								¥			
± 16								k i			
± 17											
± 18 ± 19											
± 19 ± 20											
± 20 ± 21											
± 22											
± 23											
± 24		Not Physici	ally possible								
± 25									Shaded area	indiantan	
$\frac{\pm 26}{\pm 27}$									Expanding t		
± 27 ± 28									Declining tre		
± 20 ± 29											
± 30											
± 31											
± 32											
± 33											
$\frac{\pm 34}{\pm 35}$											
± 35 ± 36											
± 30 ± 37								1 /			
± 38											
± 39								/			
± 40								/			
± 41								/			
± 42								/			
$\pm 43 \\ \pm 44$								1/			
± 44 ± 45								V			
- 10								ur -			
			Stability Evau	lation Result	s]				
							l				
	Х	No Trend Ind	icated, Plume	Not Diminishin	ig or Expandin	g					
		Х	CV<=1	Plume is Stat							
			CV>1	Plume is Fluc							
		Trend Is Pres	ent (>90% Co		-						

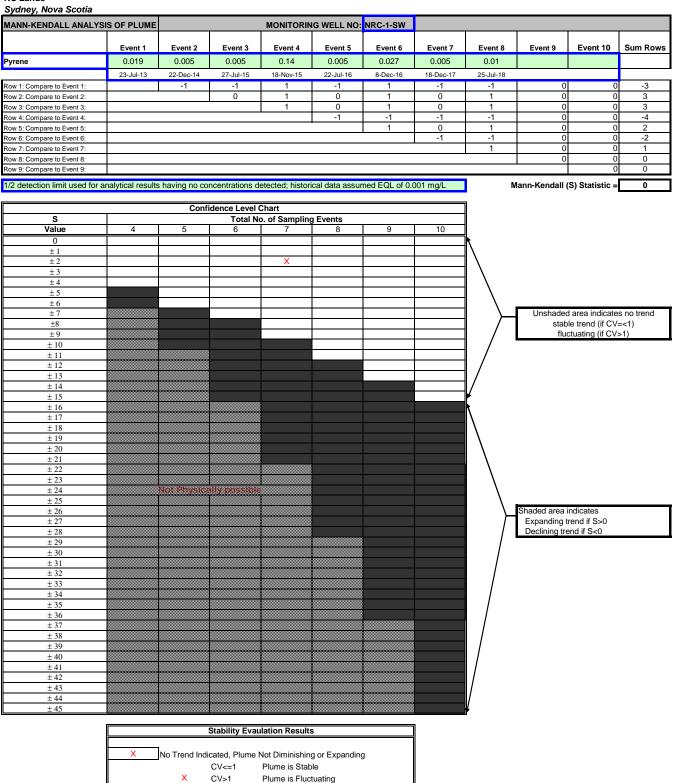

Trend Is Present (>90% Confidence) S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands


S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

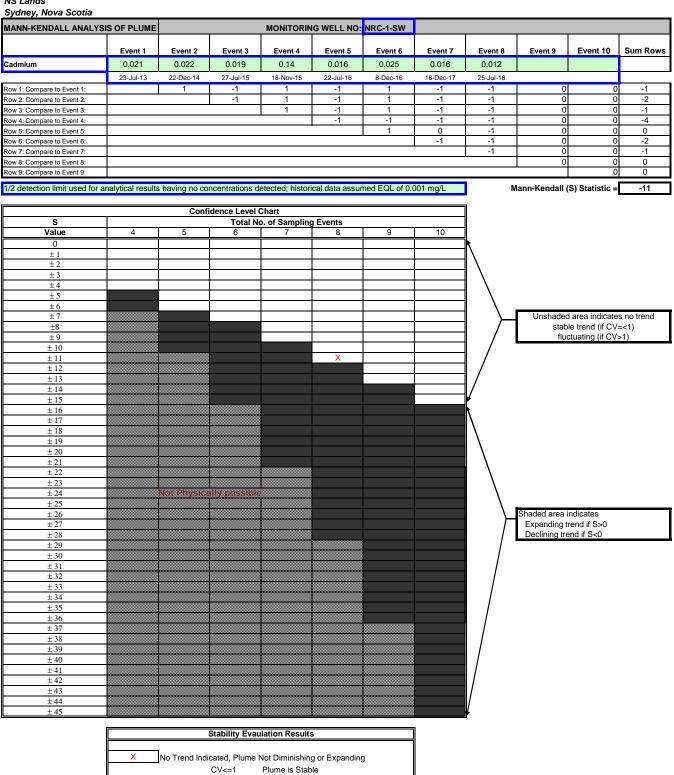
Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	G WELL NO:	NRC-1-SW					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzo(a)pyrene	0.005	0.005	0.005	0.075	0.005	0.011	0.005	0.005			
Row 1: Compare to Event 1:	23-Jul-13	22-Dec-14 0	27-Jul-15 0	18-Nov-15 1	22-Jul-16 0	8-Dec-16 1	18-Dec-17 0	25-Jul-18 0	0	0	2
Row 2: Compare to Event 1:		0	0	1	0	1	0	0	0		
Row 3: Compare to Event 3:				1	0	1	0	0	0	0	
Row 4: Compare to Event 4:					-1	-1	-1	-1	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						1	0-1	0-1	0		
Row 7: Compare to Event 7:								0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:										0	0
1/2 detection limit used for an	nalytical results	s having no co	ncentrations d	etected; histor	ical data assur	med EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	1
		0(Object				7			
S		Cont	dence Level	o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2					X						
± 2 ± 3											
±4											
± 5				-	-						
± 6 ± 7									Unshade	d area indicate	s no trend
±8										ole trend (if CV	
± 9									flu	ctuating (if CV	>1)
± 10 ± 11								/			
± 11 ± 12								/			
± 13											
± 14								/			
± 15 ± 16											
± 17											
± 18											
± 19 ± 20											
± 20											
± 22											
± 23 ± 24		Not Physics	lly possible								
± 24 ± 25									-		
± 26									Shaded area		
± 27 ± 28									Expanding Declining tr		
± 20 ± 29									Dooming a		
± 30											
± 31 ± 32											
± 32 ± 33											
± 34											
± 35 ± 36											
± 30 ± 37								/			
± 38											
± 39											
± 40 ± 41											
± 42								/			
± 43								/			
$ \pm 44 \pm 45 $								V			
<u>ب</u> ت <u>ن</u>				•	•	•		Ľ			
			Stability Evau	lation Result	s						
	Х	No Trend Indi		Not Diminishin		g					
		x	CV<=1 CV>1	Plume is Stat							
		Trend Is Pres		Plume is Fluc	lualing						
		LIGHU IS FIES	un (<u>∠</u> 00 /0 00								


S < 0

S > 0

Diminishing Plume

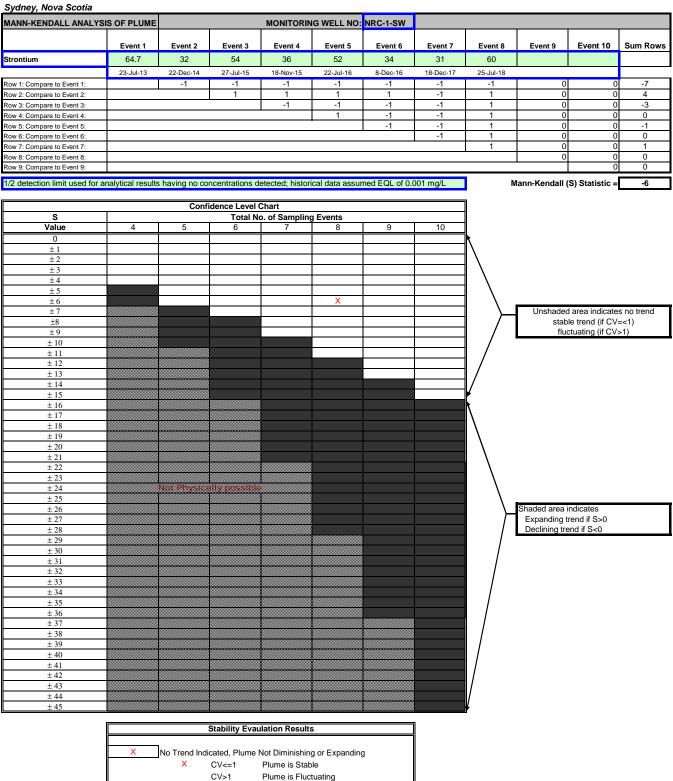
LTMM Surface Water Monitoring

NS Lands

х

CV>1

S > 0

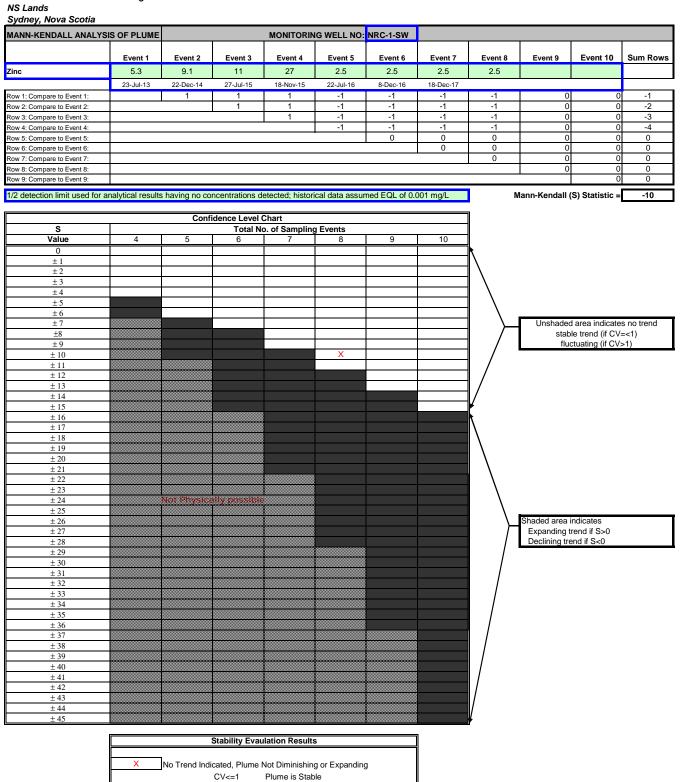

Trend Is Present (>90% Confidence) S < 0

Plume is Fluctuating

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands



Trend Is Present (\geq 90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

х

CV>1

S > 0

Trend Is Present (\geq 90% Confidence) S < 0 Diminish

Plume is Fluctuating

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	NRC-1-SW					
	Eve 14	Eur (A	Eve 10	Eve 14	En 15	E	Fra. 1 7	Eur (A	E	Event 40	Cum D
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Boron	25	25	25	25	25	25	25	25			
Row 1: Compare to Event 1:	23-Jul-13	22-Dec-14 0	27-Jul-15 0	18-Nov-15 0	22-Jul-16 0	8-Dec-16 0	18-Dec-17 0	25-Jul-18 0	0	0	0
Row 2: Compare to Event 2:		0	0	0	0	0	0	0	0		
Row 3: Compare to Event 3:				0	0	0	0	0	0		
Row 4: Compare to Event 4:					0	0	0	0	0		
Row 5: Compare to Event 5:						0	0	0	0		
Row 6: Compare to Event 6: Row 7: Compare to Event 7:							0	0	0		
Row 8: Compare to Event 8:								0	0		
Row 9: Compare to Event 9:										0	
1/2 detection limit used for a	nalytical results	having no cor	ncentrations d	etected: histori	ical data assur	med EQL of 0.0)01 mg/L	N	lann-Kendall	(S) Statistic =	0
	,	<u> </u>					J.			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Confi	dence Level]			
s				o. of Sampling							
Value	4	5	6	7	8	9	10	Ł			
0 ± 1					X			1			
± 1 ± 2											
± 3											
±4											
± 5 + 6											
± 6 ± 7									Unshade	d area indicate	s no trend
±8										ble trend (if CV	
± 9										ctuating (if CV:	
± 10											
± 11 + 12								/			
± 12 ± 13								/			
± 14								/			
±15								¥			
± 16								t i			
± 17 ± 18											
± 18 ± 19											
± 20											
±21											
± 22											
± 23 ± 24		Not Physics	div possible								
± 24 ± 25									_		
± 26									Shaded area		
± 27									Expanding to		
± 28 ± 29									Declining tr	ena II 9<0	
± 29 ± 30											
± 31											
± 32											
± 33 + 34											
± 34 ± 35											
± 35											
± 37								/			
± 38											
$\pm 39 \pm 40$											
± 40 ± 41											
± 42								/			
± 43						/					
± 44								V			
± 45								ľ			
			Stability Eval	lation Result	s						
			,								
	Х	No Trend Indi	cated, Plume I	Not Diminishin	g or Expanding	g					
			CV<=1	Plume is Stab	•						
			CV>1	Plume is Fluc	tuating						

Trend Is Present (>90% Confidence) S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

MANN-KENDALL ANALYS	IS OF PLUME		MONITORING WELL NO: NRC-1-SW								
			F 10					-		Europe 40	0
Suphate	Event 1 19	Event 2 20	Event 3 22	Event 4 15	Event 5 15	Event 6 16	Event 7 21	Event 8 12	Event 9	Event 10	Sum Rows
supriate	23-Jul-13	20 22-Dec-14	27-Jul-15	13-Nov-15	22-Jul-16	8-Dec-16	18-Dec-17	25-Jul-18			
ow 1: Compare to Event 1:	23-301-13	1	1	-1	-1	-1	10-Dec-17	-1	0	C	-1
ow 2: Compare to Event 2:			1	-1	-1	-1	1	-1	0		
ow 3: Compare to Event 3:				-1	-1	-1	-1	-1	0		
ow 4: Compare to Event 4:					0	1	1	-1	0		
ow 5: Compare to Event 5:						1	1	-1 -1	0		
ow 6: Compare to Event 6: ow 7: Compare to Event 7:	1						I	-1	0		
ow 8: Compare to Event 8:	1								0		
ow 9: Compare to Event 9:										C	
/2 detection limit used for a	nalytical result	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.	001 mg/L	N	lann-Kendall	(S) Statistic =	-7
		Conf	idence Level]			
S	4	F		o. of Samplin		9	10	-			
Value 0	4	5	6	7	8	9	10	1			
± 1		1									
± 1 ± 2								1 \			
± 3											
± 4											
± 5								- \			
± 6 ± 7					Х				Unshadeo	d area indicate	es no trend
±8		8			~					ole trend (if CV	
±9								1 /	flu	ctuating (if CV	ˈ>1) [′]
± 10											
± 11								. /			
± 12 ± 13								/			
± 13								1/			
± 15								¥			
± 16								k			
± 17											
± 18											
$\pm 19 \pm 20$											
± 21											
± 22											
± 23											
$\pm 24 \\ \pm 25$		NOT Physics	ally possible								
± 25 ± 26									Shaded area	indicates	
± 27									Expanding t		
± 28									Declining tre		
± 29								/			
$\pm 30 \\ \pm 31$											
± 31 ± 32											
± 32											
± 34								/			
± 35								/			
± 36 ± 37								/			
± 37 ± 38											
± 30								/			
± 40								/			
± 41								/			
$\pm 42 \\ \pm 43$								/			
± 43 ± 44								/			
± 44 ± 45								K			
			Stability Evau	lation Result	<u> </u>		 _				
	X	No Trend Indi X	icated, Plume CV<=1	Plume is Stat	ble	g					
			CV>1 ent (>90% Co	Plume is Fluc	tuating						

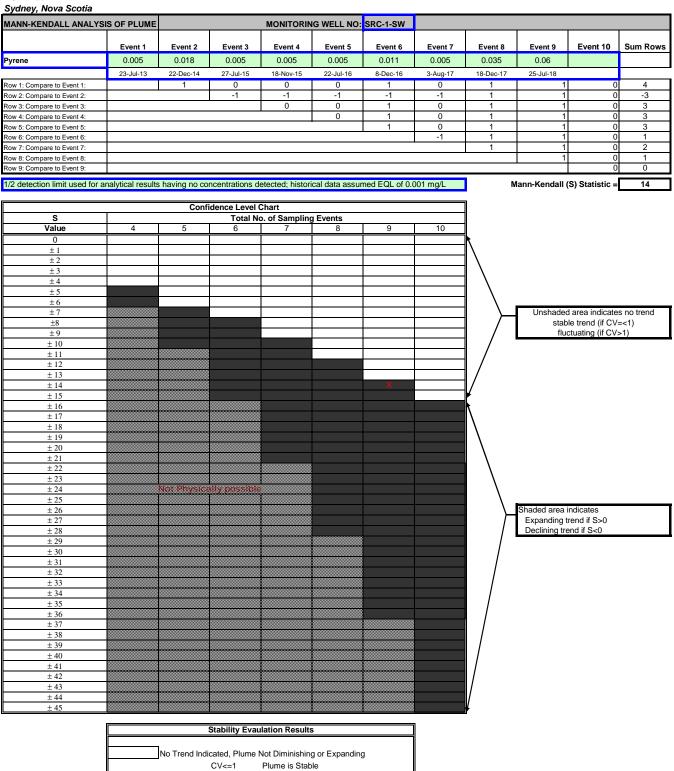
Trend Is Present (>90% Confidence) S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	SRC-1-SW					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Anthracene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compose to Friend 4:	23-JUI-13	22-Dec-14 0	27-Jul-15 0	18-NOV-15 0	22-JUI-16	8-Dec-16 0	3-Aug-17 0	18-Dec-17		0	0
Row 1: Compare to Event 1:	1	U	0	0	0	0	0	0	0		
Row 2: Compare to Event 2: Row 3: Compare to Event 3:			U	0	0	0	0	0	0		
Row 3: Compare to Event 3: Row 4: Compare to Event 4:				0	0	0	0	0	0		
Row 4: Compare to Event 4: Row 5: Compare to Event 5:					0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							, v	0	0		
Row 8: Compare to Event 8:								5	0		
Row 9: Compare to Event 9:									. 0	0	
1/2 detection limit used for an	nalytical results	s having no co	ncentrations d	etected; histori	ical data assur	ned EQL of 0.0	001 mg/L	M	Iann-Kendall	(S) Statistic =	0
<u></u>			-					ิจ			
		Confi	dence Level (4			
S				o. of Sampling				4			
Value	4	5	6	7	8	9	10	4			
0						X		N.			
±1								1			
± 2								4 \			
± 3								4 \			
± 4								4 \			
± 5								1 \			
± 6								- I I	l la shari		a no trol
± 7								∦ ≻⊣		d area indicate	
±8 + 0								∦ / ∣		ole trend (if CV:	
± 9 + 10						1		╢ / ╹	flu	ctuating (if CV:	~1)
± 10 ± 11						ł	1	1 /			
± 11 ± 12							1	1 /			
± 12 ± 13								1 /			
± 13 ± 14								1/			
± 14 ± 15								V			
± 15 ± 16								í.			
± 10 ± 17											
± 17 ± 18								1			
± 10 ± 19											
± 19 ± 20											
± 20 ± 21											
± 22											
± 23											
± 24		Not Physica	illy possible								
± 25											
± 26									Shaded area		
± 27									Expanding		
± 28								/	Declining tr	end if S<0	
± 29											
± 30								/			
± 31					L			/			
± 32								/			
± 33					L			/			
± 34								/			
± 35								/			
± 36								/			
± 37								/			
± 38								/			
± 39								/			
± 40								/			
$ \pm 41 \pm 42 $								/			
± 42 ± 43								/			
± 43 ± 44								1/			
± 44 ± 45								V			
± 4J				•	•	•		Ľ			
			Stability Evau	lation Result	S						
	X	No Trend Indi	cated. Plume	Not Diminishin	g or Expanding						
		х	CV<=1	Plume is Stab	ble						
			CV>1	Plume is Fluc	tuating						
		Trend Is Pres	ent (<u>></u> 90% Cor	nfidence)							


S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

CV>1

S < 0

S > 0

x

Х

Trend Is Present (>90% Confidence)

Plume is Fluctuating

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	SRC-1-SW					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzo(a)pyrene	0.005	0.013	0.005	0.005	0.005	0.005	0.005	0.016	0.034		Juin Rows
Sch20(a)pyrene	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compare to Event 1:	20-3ui-13	22-Dec-14	27-JUI-15 0	0	22-JUI-16 0	8-Dec-16	3-Aug-17 0	18-Dec-17	25-Jul-18	0	3
Row 2: Compare to Event 2:			-1	-1	-1	-1	-1	1	1	0	-3
Row 3: Compare to Event 3:				0	0	0	0	1	1	0	2
Row 4: Compare to Event 4: Row 5: Compare to Event 5:					0	0	0	1	1	0	2
Row 6: Compare to Event 5:						0	0	1	1	0	
Row 7: Compare to Event 7:								1	1	0	2
Row 8: Compare to Event 8:									1	0	1
Row 9: Compare to Event 9:								•		0	0
1/2 detection limit used for an	nalytical results	having no cor	ncentrations d	etected; histori	ical data assur	ned EQL of 0.0	001 mg/L	N	ann-Kendall	(S) Statistic =	11
[Confi	dence Level (Chart				1			
S				o. of Sampling	gEvents						
Value	4	5	6	7	8	9	10				
0								R I			
± 1 ± 2											
± 2 ± 3											
± 4											
± 5											
± 6 ± 7									Unshader	d area indicate	s no trend
± 7 ±8										le trend (if CV:	
±9										ctuating (if CV:	
± 10						Х					
± 11 ± 12						^					
± 13								/			
± 14								/			
± 15 ± 16								K			
± 10 ± 17								\			
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		New Di-	disc pro-	l							
± 24 ± 25		Not Physics	my production								
± 26									Shaded area		
± 27									Expanding t		
± 28 ± 29								/	Declining tre	5110 II 9<0	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $											
± 33 ± 34											
± 35											
± 36								/			
± 37 ± 38								/			
± 39											
± 40								/			
$\begin{array}{r} \pm 41 \\ \pm 42 \end{array}$								/			
± 42 ± 43								/			
± 44								/			
± 45								ŀ			
I		9	Stability Evan	lation Results	5						
					-						
	Х	No Trend Indi	cated, Plume I	Not Diminishing	g or Expanding	9					
			CV<=1	Plume is Stab							
			CV>1	Plume is Fluc	tuating						
		Trend Is Prese	ent (<u>></u> 90% Cor	ntidence)			1				

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	G WELL NO:	SRC-1-SW					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Cadmium	0.005	0.042	0.015	0.023	0.018	0.039	0.005	0.31	0.26	Event to	Julii Kows
•••••••••••••	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compare to Event 1:	20 001 10	1	1	1	1	1	0	1	1	0	7
Row 2: Compare to Event 2:			-1	-1	-1	-1	-1	1	1	0	-3
Row 3: Compare to Event 3: Row 4: Compare to Event 4:				1	1 -1	1	-1 -1	1	1	0	
Row 5: Compare to Event 5:					-1	1	-1	1	1	0	
Row 6: Compare to Event 6:							-1	1	1		
Row 7: Compare to Event 7: Row 8: Compare to Event 8:								1	-1	0	
Row 9: Compare to Event 9:										0	
1/2 detection limit used for ar	nalytical results	having no co	ncentrations d	etected; histor	ical data assur	ned EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	13
										. ,	
		Confi	dence Level		- F						
S Value	4	5	6	o. of Sampling 7	8 Events	9	10				
0			-		-	-					
±1											
± 2 ± 3											
± 3 ± 4											
± 5											
± 6 ± 7									Unshade	d area indicate	s no trend
±8									stat	le trend (if CV	=<1)
±9 +10								/ /	flu	ctuating (if CV	>1)
± 10 ± 11								/			
± 12											
± 13 ± 14						Х		/			
± 14 ± 15								4			
±16											
± 17 ± 18								$\left \right\rangle$			
± 18 ± 19											
± 20											
$\pm 21 \\ \pm 22$											
± 23											
± 24		Not Physics	illy possible								
± 25 ± 26									Shaded area	indicates	
± 27									Expanding	rend if S>0	
± 28 ± 29								. /	Declining tr	end if S<0	
± 29 ± 30											
± 31											
$ \begin{array}{r} \pm 32 \\ \pm 33 \end{array} $											
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$											
± 38											
± 39											
$\pm 40 \\ \pm 41$								/			
± 42								/			
± 43								/			
$\frac{\pm 44}{\pm 45}$								V			
								L.			
			Stability Eval	lation Result	S						
	×	No Trend Indi	natod Diuma I	Not Diminiatio	a or Expandia						
	^		CV<=1	Plume is Stat		J					
			CV>1	Plume is Fluc							
		Trend Is Pres	ent (<u>></u> 90% Co		-						

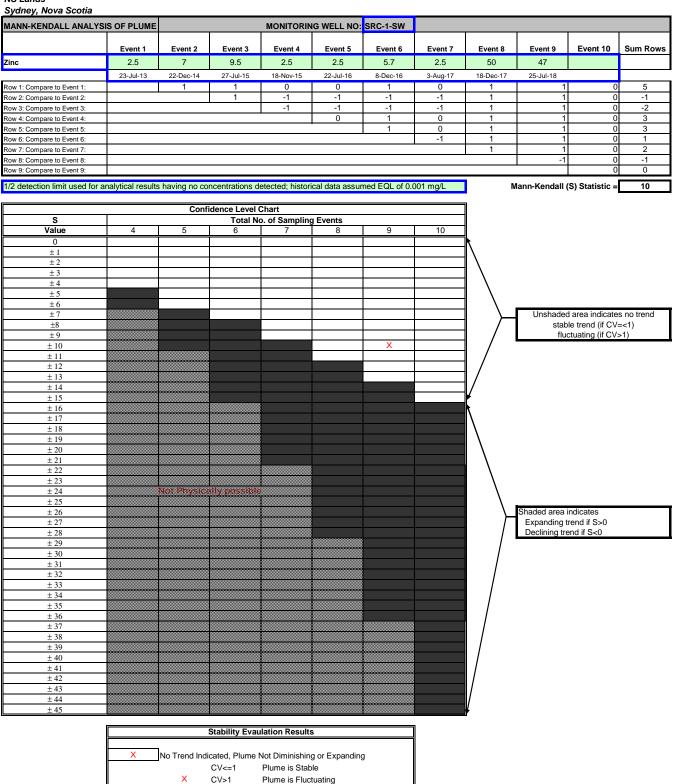
S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	SRC-1-SW					
							l				
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Strontium	174	150	150	150	170	140	190	140	180		
	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compose to Friend 1:	23-JUI-13	22-Dec-14 -1		18-NOV-15 -1	-1	8-Dec-16	3-Aug-17		25-Jui-18 1	0	_1
Row 1: Compare to Event 1:	l I	-1	-1 0	-1		-1 -1	1	-1 -1	1		
Row 2: Compare to Event 2: Row 3: Compare to Event 3:	<u> </u>	1	U	0	1	-1	1	-1	1		
Row 3: Compare to Event 3: Row 4: Compare to Event 4:	<u> </u>				1	-1	1	-1	1		
Row 4: Compare to Event 4: Row 5: Compare to Event 5:	<u> </u>				· · · ·	-1	1	-1	1		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:	<u> </u>					- 1	1	- 1	1		
Row 7: Compare to Event 7:							· ·	-1	-1		
Row 8: Compare to Event 8:								·	1	0	
Row 9: Compare to Event 9:								·	·	0	
1/2 detection limit used for an	nalytical results	s naving no col	ncentrations d	etected; histori	ical data assur	ned EQL of 0.(JU1 mg/L	M	ann-kendall	(S) Statistic =	0
1								า			
		Confi	dence Level (1			
S				o. of Sampling			- 40	1			
Value	4	5	6	7	8	9	10	l I			
0		l	1	i	ļ	X	l	Λ			
± 1		ļļ		ļ	ļ	l	ļ	1			
± 2		l	1	i	ļ	ļ	l	\			
± 3		ļļ		i	i	ļi	ļ	\			
± 4		ļļ	L	├ ────	i	├ i	ļ	1 \			
± 5		ب ـــــــــا			i	ļi	ļ	\			
± 6 + 7			L	├ ────	i	├ i	ļ	\	111	l orea != "	n no 4 '
± 7 +9		التوري		l	li	┝────┤	ļ			d area indicates	
±8 + 0				├ ───		├	ļ	4 / K		ole trend (if CV=	
±9 +10						├ ───┤	├ ────	∥ / ⊾	TIU	ctuating (if CV>	- 1/
± 10 ± 11							ŀ	/			
± 11 ± 12						├	ŀ	/			
± 12 ± 13							ŀ	1/			
± 13 ± 14							ŀ	1/			
± 14 ± 15							ŀ	¥			
± 15 ± 16								K.			
± 10 ± 17								1			
± 17 ± 18								11			
± 18 ± 19								1 \			
± 19 ± 20								1 \			
± 20 ± 21								1 \			
± 21 ± 22											
± 23											
± 24		Not Physica	lly possible								
± 25											
± 26									Shaded area	indicates	
± 27									Expanding t		
± 28								/	Declining tre		
± 29								1 / '			
± 30								/			
± 31											
± 32								/			
± 33								/			
± 34								/			
± 35								/			
± 36								/			
± 37								1 /			
± 38								1 /			
± 39								1 /			
± 40								/			
± 41 + 42								1/			
± 42 + 43								1/			
± 43 + 44								11/			
$\frac{\pm 44}{\pm 45}$								V			
± 40								u,			
]			Stability Evau	lation Results	<u> </u>]	l				
	X	No Trend India	cated Plume	Not Diminishing	a or Expanding	,					
	····	Х	CV<=1	Plume is Stab	ole						
	ļ			Plume is Fluct	tuating		1				
		Trend Is Prese	ent (<u>></u> 90% Cor	nfidence)			1				

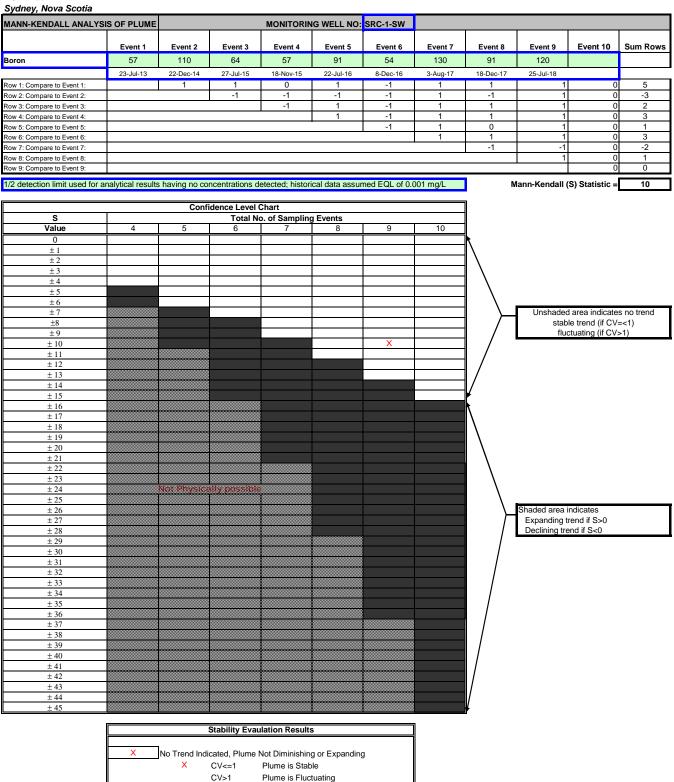

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands


Trend Is Present (\geq 90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

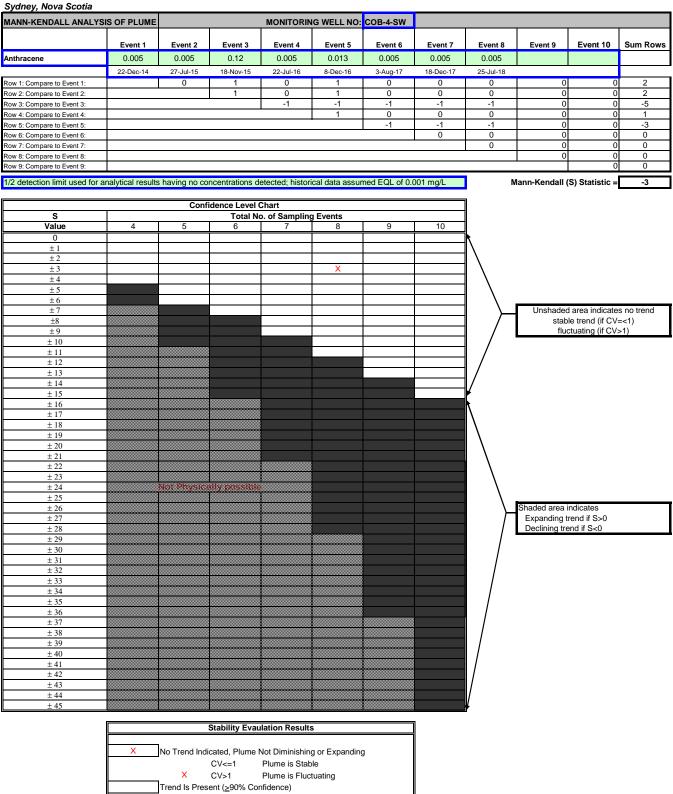
Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	G WELL NO:	SRC-1-SW					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Sulphate	40	54	47	43	51	42	54	50	43		
• ***	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compare to Event 1:		1	1	1	1	1	1	1	1	0	8
Row 2: Compare to Event 2:		· ·	-1	-1	-1	-1	0	-1	-1	0	
Row 3: Compare to Event 3:				-1	1	-1	1	1	-1	0	0
Row 4: Compare to Event 4:					1	-1	1	1	0		2
Row 5: Compare to Event 5:						-1	1	-1	-1	0	-2
Row 6: Compare to Event 6:							1	1	1	0	
Row 7: Compare to Event 7: Row 8: Compare to Event 8:								-1	-1 -1	0	
Row 9: Compare to Event 9:									-1	0	
	-			e te e te els la la la te est			201				
1/2 detection limit used for ar	nalytical results	s naving no cor	ncentrations d	etected; histori	cal data assur	ned EQL of U.	JUI mg/L	IV IV	lann-Kendall ((5) Statistic =	2
		Confi	dence Level (Chart				7			
S		00/11		o. of Sampling	g Events			1			
Value	4	5	6	7	8	9	10	1			
0								k			
±1								\			
±2						X		\			
$\frac{\pm 3}{\pm 4}$								\			
± 4 ± 5											
± 5 ± 6											
±7										d area indicate	
±8										le trend (if CV	
± 9								. /	flue	ctuating (if CV	>1)
± 10 + 11								/			
± 11 ± 12								/			
± 12 ± 13								/			
± 13								1/			
± 15								¥.			
± 16								R I			
± 17											
± 18 ± 19											
± 19 ± 20											
± 20 ± 21											
± 22											
± 23											
± 24		Not Physica	ny possible								
$\frac{\pm 25}{\pm 26}$									Shaded area	indicates	
± 20 ± 27									Expanding t		
± 28									Declining tre		
± 29											
± 30											
± 31 + 22											
$\begin{array}{r} \pm 32 \\ \pm 33 \end{array}$											
± 33 ± 34											
± 34 ± 35											
± 36											
± 37											
± 38								/			
$\frac{\pm 39}{\pm 40}$								/			
± 40 ± 41								/			
± 41 ± 42								/			
± 43								/			
± 44								/			
± 45								¥			
							1				
			Stability Evau	lation Results	5						
	X	No Trend India	rated Plumo	Not Diminishin	n or Expanding	n					
	~		CV<=1	Plume is Stab		А					
			CV<=1 CV>1	Plume is Fluc							
		Trend Is Prese			y						

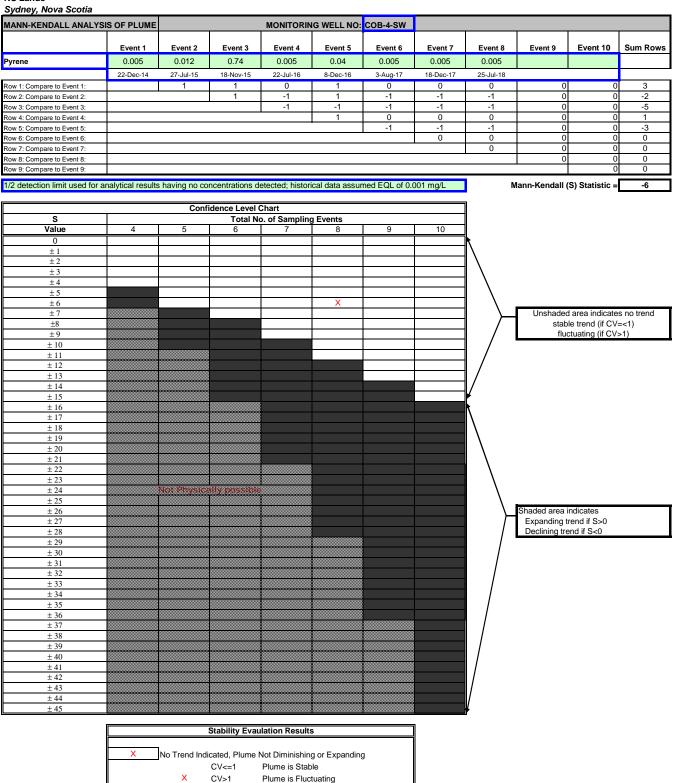

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

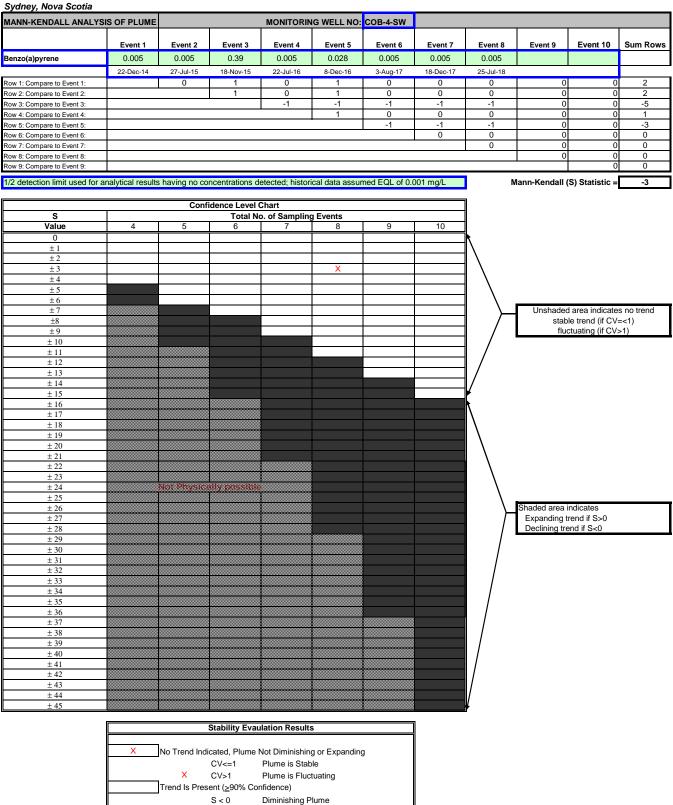

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

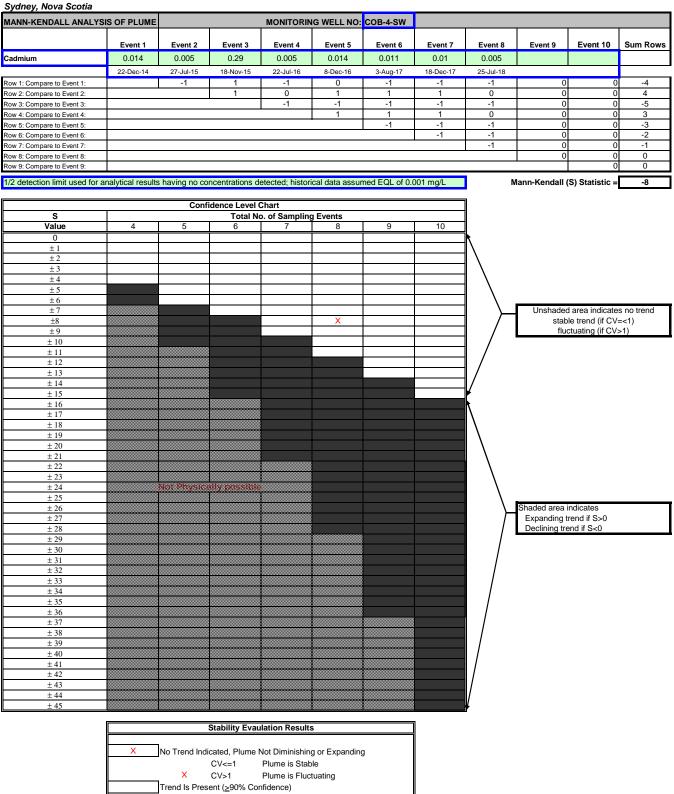
NS Lands


Trend Is Present (\geq 90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

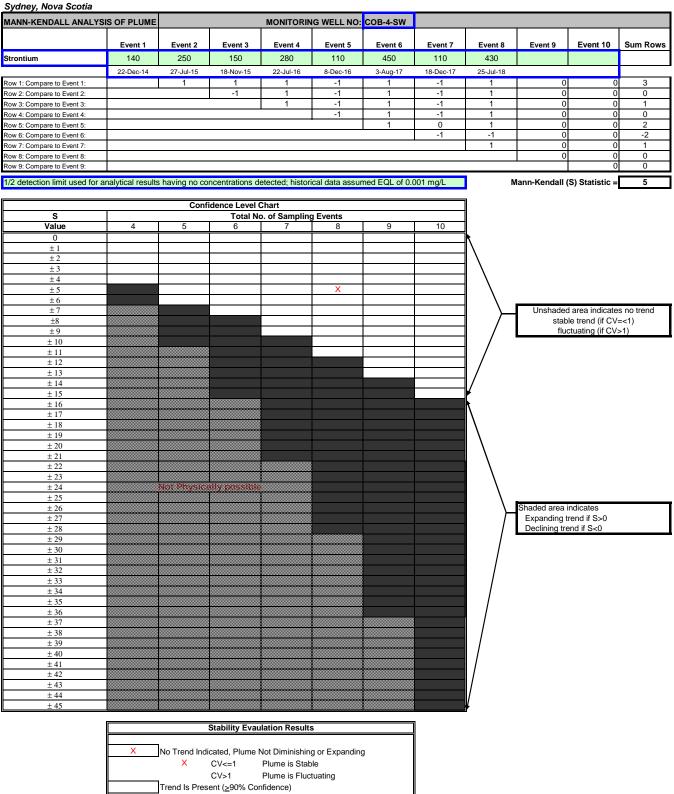
LTMM Surface Water Monitoring


NS Lands

S > 0

LTMM Surface Water Monitoring

NS Lands

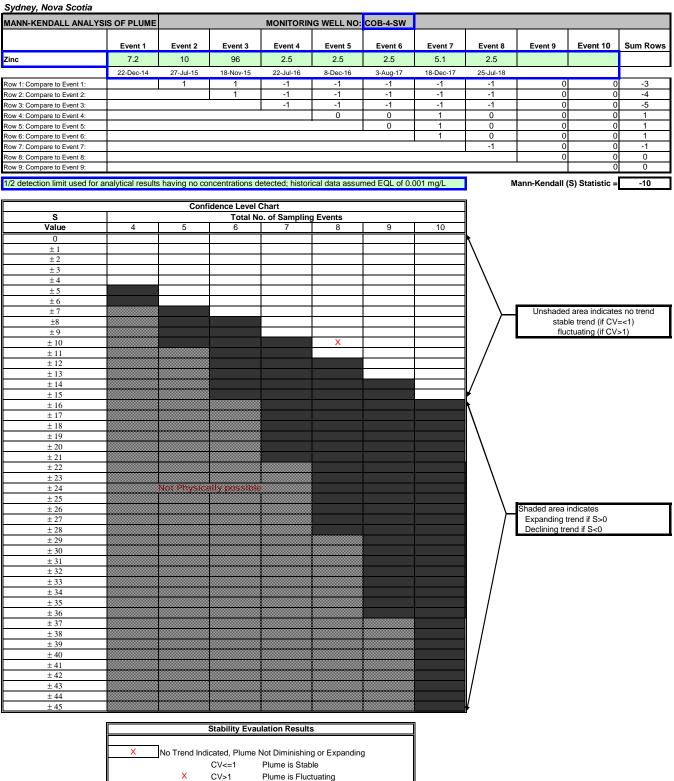

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

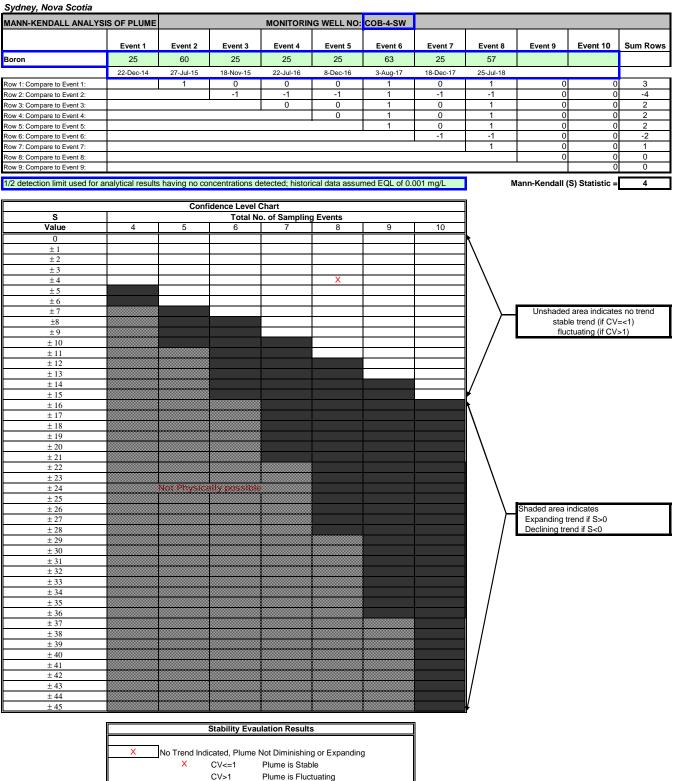

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

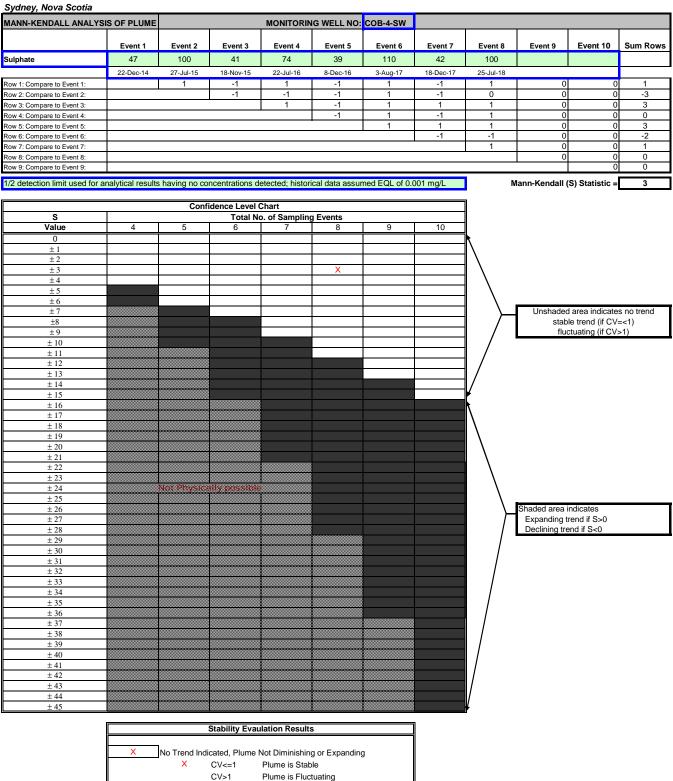

Trend Is Present (\geq 90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands


Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	COB-6-SW					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Anthracene	0.015	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.005		
	23-Jul-13		27-Jul-15								
Row 1: Compose to Event 4:	∠3-JUI-13	22-Dec-14	27-Jul-15 -1	18-Nov-15 -1	22-Jul-16 -1	8-Dec-16 -1	3-Aug-17	18-Dec-17	25-Jul-18	<u>^</u>	0
Row 1: Compare to Event 1: Row 2: Compare to Event 2:		-1	-1	-1	-1	-1	-1 0	-1	-1 0	0	
Row 2: Compare to Event 2: Row 3: Compare to Event 3:			U	0	0	1	0	0	0		
Row 3: Compare to Event 3: Row 4: Compare to Event 4:	<u> </u>			0	0	1	0	0	0		
Row 5: Compare to Event 5:					• · · ·	1	0	0	0		
Row 6: Compare to Event 6:							-1	-1	-1		
Row 7: Compare to Event 7:								0	0	0	
Row 8: Compare to Event 8:									0	0	0
Row 9: Compare to Event 9:										0	0
1/2 detection limit used for ar	nalytical results	having no co	ncentrations d	etected: histori	ical data assur	med EQL of 0 ()01 mg/l	N	lann-Kendall	(S) Statistic =	-7
	larytical result	naving no ool					oor mg/E			(0) 010110110 =	
		Confi	dence Level	Chart				7			
S				o. of Sampling	a Events						
Value	4	5	6	7	8	9	10	1			
0			-	İ				k			
±1								1\			
± 2								1 \			
± 3											
± 4											
± 5											
± 6											
± 7						Х		∦ ≻⊣		d area indicate	
±8 + 0								/		ole trend (if CV	
± 9 + 10								/	flu	ctuating (if CV	>1)
± 10 ± 11								1 /			
± 11 ± 12								1 /			
± 12 ± 13								1/			
± 15 ± 14								1/			
± 15								¥			
± 16											
± 17											
± 18											
± 19											
± 20											
± 21					8						
± 22 ± 23											
± 23 ± 24		Not Physica	dia nossible								
± 24 ± 25											
± 25 ± 26									Shaded area	indicates	T
± 27									Expanding	trend if S>0	
± 28									Declining tr		
± 29								. /			
± 30								/			
± 31								/			
± 32								/			
± 33 ± 34								/			
± 34 ± 35								/			
± 35								1 /			
± 30 ± 37								1 /			
± 38								/			
± 39								/			
± 40								/			
± 41								/			
± 42								/			
± 43								/			
± 44								/			
± 45								•			
	1		<u></u>				1				
			Stability Eval	lation Result	S						
	~	No. Too. 11. 11									
	Х			Not Diminishin	•	J					
			CV<=1	Plume is Stab							
			CV>1	Plume is Fluc	tuating						
		Trend Is Pres	ent (<u>></u> 90% Co	nfidence)							

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYS	IS OF PLUME			MONITORIN							
		-									
-	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Pyrene	0.026	0.013	0.005	0.03	0.005	0.038	0.017	0.012	0.005		
Row 1: Compare to Event 1:	23-Jul-13	22-Dec-14 -1	27-Jul-15 -1	18-Nov-15 1	22-Jul-16 -1	8-Dec-16	3-Aug-17 -1	18-Dec-17 -1	25-Jul-18 -1	0	-4
Row 1: Compare to Event 1: Row 2: Compare to Event 2:		-1	-1	1	-1	1	-1	-1	-1	0	-4 -1
Row 3: Compare to Event 3:				1	0	1	1	1	0		
Row 4: Compare to Event 4:				•	-1	1	-1	-1	-1	0	
Row 5: Compare to Event 5:						1	1	1	0		
Row 6: Compare to Event 6: Row 7: Compare to Event 7:							-1	-1 -1	-1 -1	0	
Row 8: Compare to Event 8:								-1	-1	0	
Row 9: Compare to Event 9:										0	
1/2 detection limit used for a	nalytical results	s having no co	ncentrations d	etected: histori	ical data assu	med EQL of 0.0)01 ma/L	N N	ann-Kendall	(S) Statistic =	-7
							50 T 11.9 L			(0) 010110110 =	
		Confi	dence Level	Chart]			
S				o. of Sampling							
Value	4	5	6	7	8	9	10	ļ			
0 ± 1								1			
± 1 ± 2											
± 3											
± 4											
± 5											
± 6 ± 7						X			Unshader	d area indicate	s no trend
±8						~				le trend (if CV	
± 9										ctuating (if CV	
± 10											
± 11						-		4 /			
± 12 ± 13								4 /			
± 13 ± 14								1/			
± 15								¥			
± 16								k i			
± 17											
± 18 ± 19											
± 20											
± 21											
± 22											
± 23 ± 24		Not Physics	dia massibili								
± 24 ± 25		tor : igoiot	ny poonen								
± 26									Shaded area		
± 27								/	Expanding t		
± 28 ± 29								/	Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30								I /			
± 31											
± 32								. /			
± 33 ± 34											
± 34 ± 35								1 /			
± 36								/			
± 37								/			
± 38								/			
$\frac{\pm 39}{\pm 40}$. /			
± 40 ± 41								/			
± 42								/			
± 43								/			
± 44 ± 45								V			
± 40								ľ			
	[Stability Evau	lation Result	s		1				
		_									
	X	No Trend Indi		Not Diminishin	g or Expandin	g					
		Х	CV<=1	Plume is Stab							
		_	CV>1	Plume is Fluc	tuating						

Trend Is Present (>90% Confidence) S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	COB-6-SW		1		1	
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzo(a)pyrene	0.005	0.005	0.005	0.015	0.005	0.027	0.005	0.005	0.005	Event to	Julii Kows
	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compare to Event 1:		0	0	1	0	1	0	0	0	0	2
Row 2: Compare to Event 2:			0	1	0	1	0	0	0		
Row 3: Compare to Event 3: Row 4: Compare to Event 4:				1	-1	1	-1	0	-1		
Row 5: Compare to Event 5:					-1	1	0	0	0		
Row 6: Compare to Event 6:							-1	-1	-1		
Row 7: Compare to Event 7: Row 8: Compare to Event 8:								0	0		
Row 9: Compare to Event 9:										0	
1/2 detection limit used for ar	nalytical results	having no co	ncentrations d	etected; histori	ical data assur	med EQL of 0.0	001 mg/L	N	ann-Kendall	(S) Statistic =	1
		Confi	dence Level								
S Value	4	5	6	o. of Sampling	8 Events	9	10				
0		-			-						
±1						Х		$\langle \cdot \rangle$			
± 2 ± 3											
± 4											
± 5											
± 6 ± 7									Unshade	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9 ± 10								/	flu	ctuating (if CV	>1)
± 10 ± 11								/			
± 12											
± 13 ± 14								/			
± 14 ± 15								4			
± 16								k			
± 17 ± 18								\mathbf{N}			
± 10 ± 19											
± 20											
± 21 ± 22											
± 23											
± 24 ± 25		Not Physica	illy possible								
± 25 ± 26									Shaded area	indicates	ľ
± 27									Expanding		
± 28 ± 29									Declining tr	end if S<0	
± 30											
± 31											
$\begin{array}{r} \pm 32 \\ \pm 33 \end{array}$											
± 34											
± 35 + 26											
$\frac{\pm 36}{\pm 37}$								/			
± 38											
$\frac{\pm 39}{\pm 40}$											
± 40 ± 41											
± 42											
$\frac{\pm 43}{\pm 44}$								/			
± 44 ± 45								ł			
							1	-			
			Stability Evau	lation Result	8						
	X	No Trend Indi	rated Plumo	Not Diminishin	g or Expandin	n					
			CV<=1	Plume is Stab		9					
			CV>1	Plume is Fluc							
		Trend Is Pres	ent (<u>></u> 90% Cor	nfidence)							

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI								1	r		
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Cadmium	0.005	0.01	0.005	0.018	0.005	0.015	0.011	0.01	0.005		
	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compare to Event 1:		1	0	1	0	1	1	1	0		
Row 2: Compare to Event 2:			-1	1	-1	1	1	0	-1		
Row 3: Compare to Event 3:				1	-1	1	1 -1	1 -1	0		
Row 4: Compare to Event 4: Row 5: Compare to Event 5:					-1	-1 1	-1	-1	-1		-5 3
Row 6: Compare to Event 5:						· · ·	-1	-1	-1		
Row 7: Compare to Event 7:								-1	-1	-	-2
Row 8: Compare to Event 8:									-1		
Row 9: Compare to Event 9:										0	-
1/2 detection limit used for an	nalytical results	s having no co	ncentrations d	etected; histori	ical data assur	med EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	1
		Confi	dence Level	Chart				1			
S		00111		o. of Sampling	g Events			1			
Value	4	5	6	7	8	9	10]			
0								R I			
± 1 + 2						X					
$\frac{\pm 2}{\pm 3}$											
± 3 ± 4											
± 5											
± 6											
± 7 ±8										d area indicate ble trend (if CV	
±8 ±9								/ /		ctuating (if CV:	
± 10								/ '			1
±11								/			
± 12 + 12								/			
± 13 ± 14								/			
± 14 ± 15								¥			
± 16								k i			
± 17								1			
± 18 ± 19											
± 19 ± 20											
± 21											
± 22											
± 23 ± 24		Not Physics	lly possible								
± 24 ± 25											
± 26									Shaded area		
± 27									Expanding		
± 28 ± 29									Declining tr	CIIU II 3 <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
± 32											
± 33 ± 34											
± 34 ± 35								/			
± 36								/			
± 37											
± 38 ± 39											
± 39 ± 40											
± 41											
± 42								/			
$\pm 43 \\ \pm 44$								/			
± 44 ± 45								¥			
_ ~								Ш			
			Stability Evau	lation Results	5						
		1									
	Х			Not Diminishin		g					
		Х	CV<=1	Plume is Stab							
			CV>1	Plume is Fluc	tuating		1				

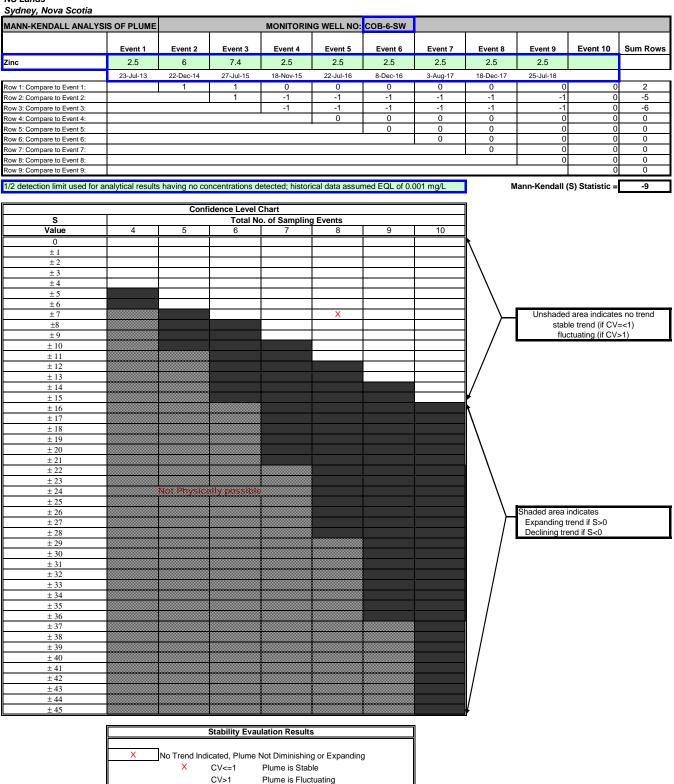
Trend Is Present (>90% Confidence) S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYS											
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Strontium	645	180	300	180	300	160	500	160	350		
	23-Jul-13	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18		
Row 1: Compare to Event 1:		-1	-1	-1	-1	-1	-1	-1	-1		
Row 2: Compare to Event 2:			1	0	1	-1	1	-1	1		
Row 3: Compare to Event 3:				-1	0	-1	1	-1	1		
Row 4: Compare to Event 4:					1	-1 -1	1	-1 -1	1		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						-1	1	0	1		
Row 7: Compare to Event 7:								-1	-1		
Row 8: Compare to Event 8:								•	1		
Row 9: Compare to Event 9:										0	0
1/2 detection limit used for a	nalytical results	s having no co	ncentrations d	etected; histori	ical data assur	med EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	-5
								-			
	1	Confi	dence Level								
S Value	4	5		o. of Sampling 7		0	10	-			
	4	5	6	1	8	9	10				
0 ± 1								1			
± 1 ± 2											
± 3											
± 4											
± 5						X					
± 6									· · · · ·		
± 7 ±8										d area indicate	
±8 ±9								- /		ole trend (if CV ctuating (if CV	
± 10								1 /		iotaating (ii O V	> 1)
± 10								1 /			
± 12								1 /			
± 13											
± 14								-1/			
± 15 ± 16											
± 16 ± 17								Λ			
± 18											
± 19											
± 20											
± 21											
± 22 ± 23											
± 23 ± 24		Not Physics	liv possible								
± 25									_		
± 26									Shaded area		
± 27									Expanding		
± 28									Declining tr	end if S<0	
± 29 ± 30											
± 30											
± 32											
± 33											
± 34											
± 35 ± 36											
± 30 ± 37								1 /			
± 38								1 /			
± 39											
± 40											
± 41								. /			
$\pm 42 \\ \pm 43$								/			
± 43 ± 44								1/			
± 44 ± 45								¥			
			Stability Evau	Ilation Result	s						
		1									
	X	No Trend Indi				g					
		Х	CV<=1	Plume is Stab							
		1	CV>1	Plume is Fluc	tuating						

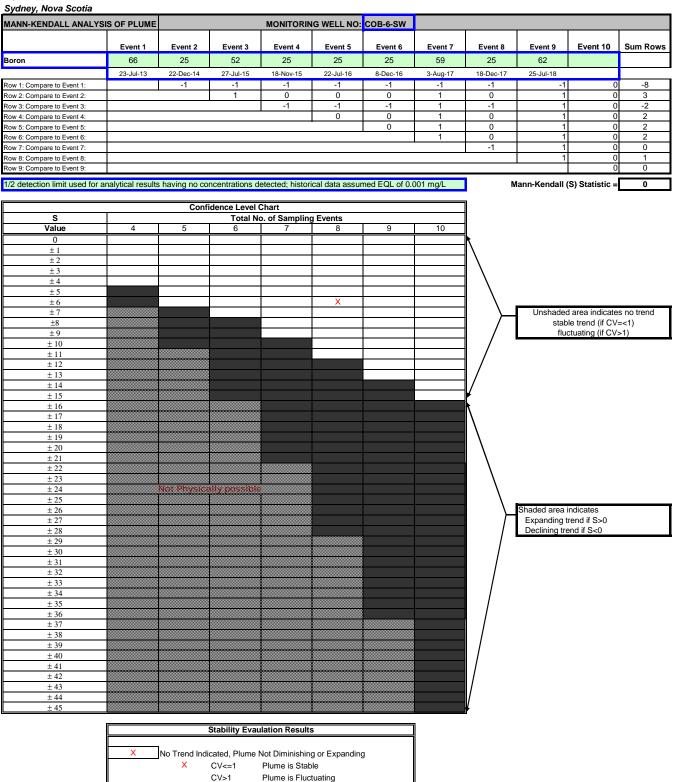

Trend Is Present (>90% Confidence) S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

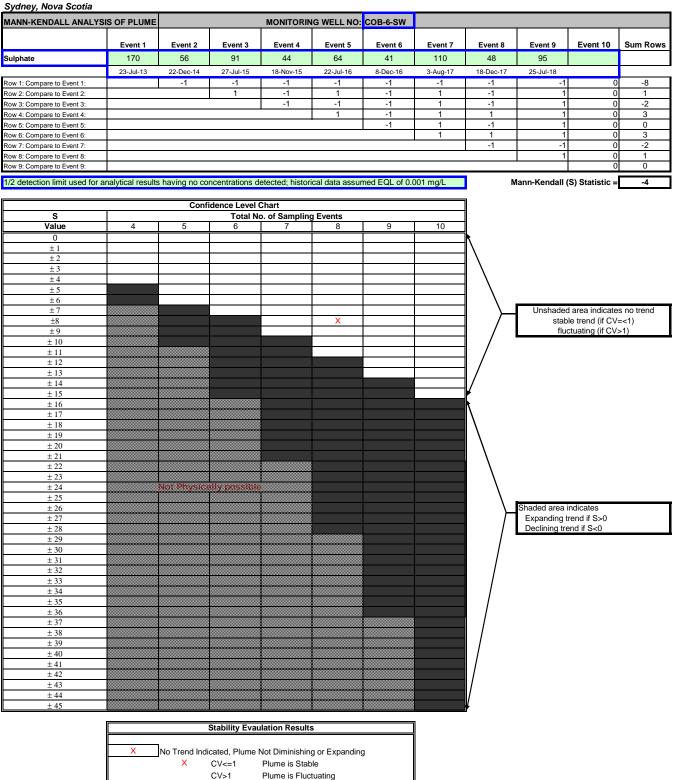

Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands


Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

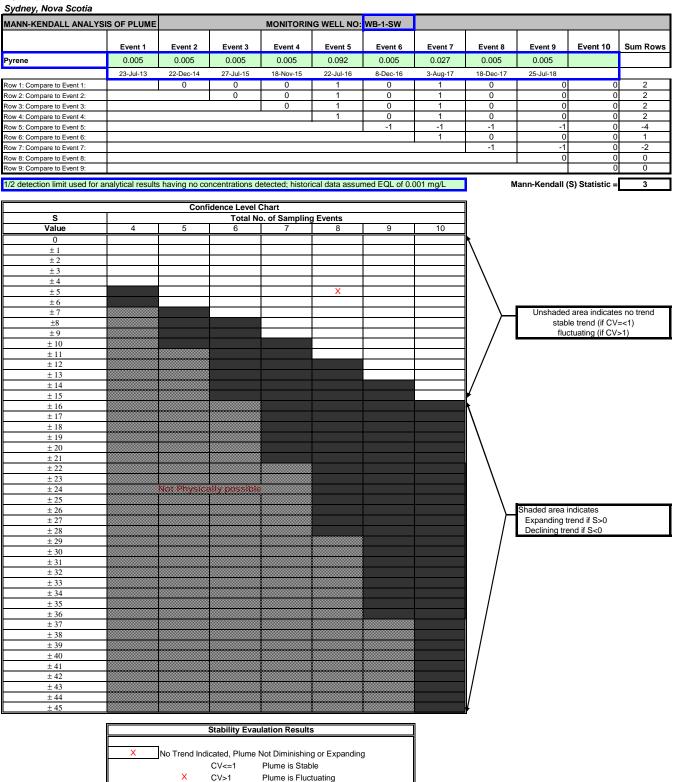
Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN							
	Eur (1	Fue (A		Eve 14	5-1-1-5	Fig. (A	Fra 1 7	F _1, (A)	Ever 10	Event 40	Sum David
Anthropono	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Anthracene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005 25-Jul-18		
Row 1: Compare to Event 1:	23-Jul-13	22-Dec-14 0	27-Jul-15 0	18-Nov-15 0	22-Jul-16 0	8-Dec-16 0	3-Aug-17 0	18-Dec-17 0	25-Jul-18	0	0
Row 2: Compare to Event 2:		, ,	0	0	0	0	0	0	0		
Row 3: Compare to Event 3:				0	0	0	0	0	0	0	
Row 4: Compare to Event 4:					0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						U	0	0	0		
Row 7: Compare to Event 7:								0	0	0	0
Row 8: Compare to Event 8:									0	0	
Row 9: Compare to Event 9:											
1/2 detection limit used for an	alytical results	having no cor	ncentrations d	etected; histori	ical data assur	ned EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	0
		Confi	dence Level (Chart				1			
S				o. of Sampling	g Events			1			
Value	4	5	6	7	8	9	10	Į.			
0 ± 1					X			7			
± 1 ± 2					~			1			
± 3											
$\frac{\pm 4}{\pm 5}$											
± 5 ± 6											
± 7								∣)_		d area indicate	
±8 + 0								/		le trend (if CV	
± 9 ± 10								/	ſlu	ctuating (if CV	~1)
±11								/			
± 12 + 12								/			
± 13 ± 14								/			
± 14 ± 15								¥			
± 16								k i			
± 17 ± 18								1			
± 18 ± 19											
± 20											
$\pm 21 \\ \pm 22$											
± 22 ± 23											
± 24		Not Physica	lly possible								
$\pm 25 \\ \pm 26$									Shaded area	indicates	
± 20 ± 27									Expanding t		
± 28									Declining tre		
± 29 ± 30											
± 30 ± 31											
± 32											
$\frac{\pm 33}{\pm 34}$											
± 34 ± 35								/			
± 36											
± 37 ± 38								/			
± 38 ± 39								/			
± 40								/			
± 41 + 42								/			
$\frac{\pm 42}{\pm 43}$								/			
± 44								/			
± 45								¥			
I			Stability Evan	lation Result			1				
			Julianinty ∟vdu	nation Neodili	-						
	Х	No Trend Indi	cated, Plume I	Not Diminishin	g or Expanding	g					
		Х	CV<=1	Plume is Stab	le						
	 		CV>1	Plume is Fluc	tuating						
		Trend Is Prese	ent (>90% Cor	nfidence)			1				


Diminishing Plume

Expanding Plume

S < 0 S > 0

LTMM Surface Water Monitoring

NS Lands

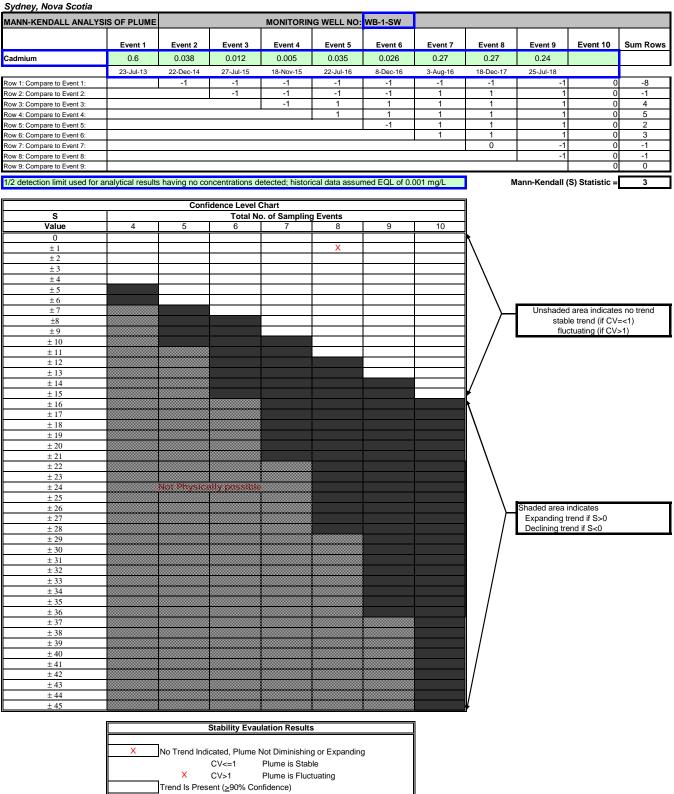
Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	WB-1-SW					
	Event 4	Event 0	Event 0	Event 4	Event F	Evente	Event 7	Event 0	Event	Event 40	Sum Dours
Ponzo(a)nyrona	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzo(a)pyrene	0.005 23-Jul-13	0.005 22-Dec-14	0.005 27-Jul-15	0.005 18-Nov-15	0.025 22-Jul-16	0.005 8-Dec-16	0.005 3-Aug-17	0.005 18-Dec-17	0.005 25-Jul-18		
Row 1: Compare to Event 1:	23-JUI-13	22-Dec-14 0	27-Jul-15 0	18-NOV-15 0	22-Jul-16	8-Dec-16 0	3-Aug-17 0	18-Dec-17	25-Jul-18 0	0	1
Row 2: Compare to Event 2:		,	0	0	1	0	0	0	0	0	1
Row 3: Compare to Event 3:				0	1	0	0	0	0		
Row 4: Compare to Event 4: Row 5: Compare to Event 5:					1	0-1	0 -1	0-1	0-1	0	
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						-1	-1	-1	-1		
Row 7: Compare to Event 7:							-	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for an	nalytical results	having no co	ncentrations d	etected; histor	ical data assur	med EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	0
		Confi	dence Level	hart				٦			
S		Conn		o. of Sampling	g Events						
Value	4	5	6	7	8	9	10]			
0								N			
± 1 ± 2					X			\			
± 2 ± 3											
± 4											
± 5								\			
± 6 ± 7									Unshade	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
±9									flu	ctuating (if CV	>1)
± 10 ± 11								/			
± 11 ± 12								1 /			
± 13]/			
± 14 ± 15								<u>/</u>			
± 15 ± 16											
± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 21											
± 22											
± 23 ± 24		Not Physics									
± 24 ± 25			1 Provinsilie								
± 26									Shaded area		
± 27 ± 28									Expanding to Declining tr		
± 28 ± 29									Dooming th		
± 30								/			
± 31 + 32											
$\begin{array}{r} \pm 32 \\ \pm 33 \end{array}$											
± 33 ± 34											
± 35								/			
$\frac{\pm 36}{\pm 37}$								/			
± 37								/			
± 39								/			
$\frac{\pm 40}{\pm 41}$								/			
± 41 ± 42								/			
± 43								/			
± 44 + 45								V			
± 45								ľ			
			Stability Evau	lation Results	6		1				
	X				g or Expanding	g					
			CV<=1	Plume is Stab							
			CV>1	Plume is Fluc	tuating						
		Trend Is Pres	ent (<u>></u> 90% Coi	maence)			1				

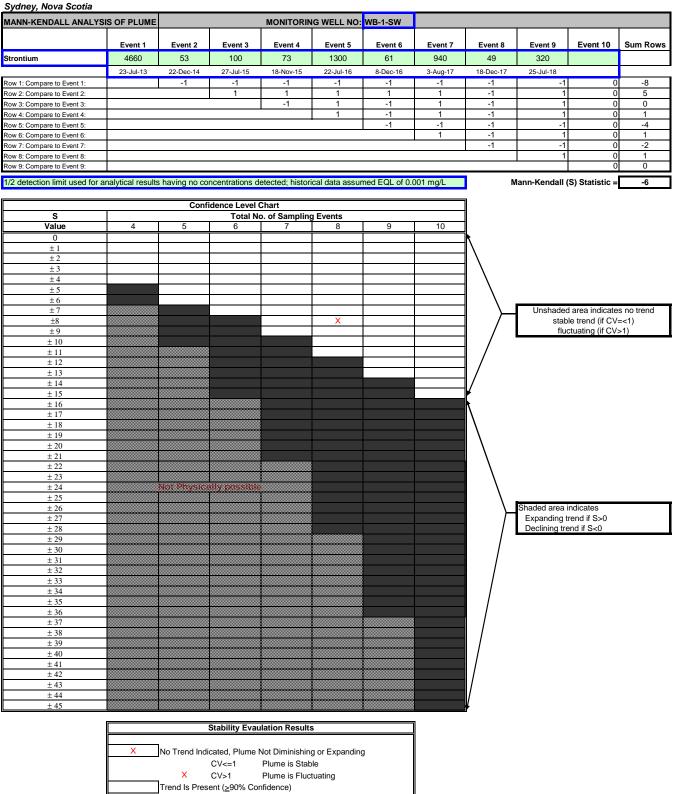

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

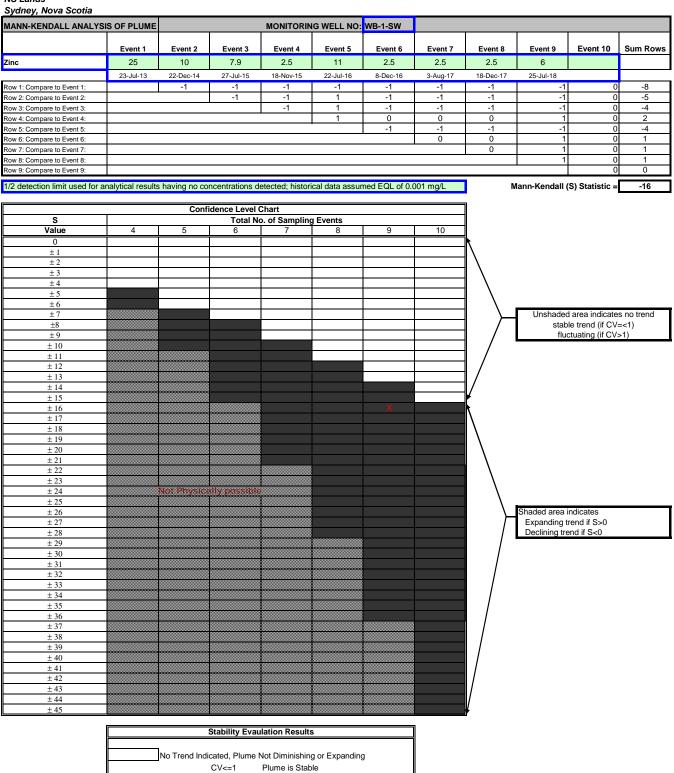

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands


S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

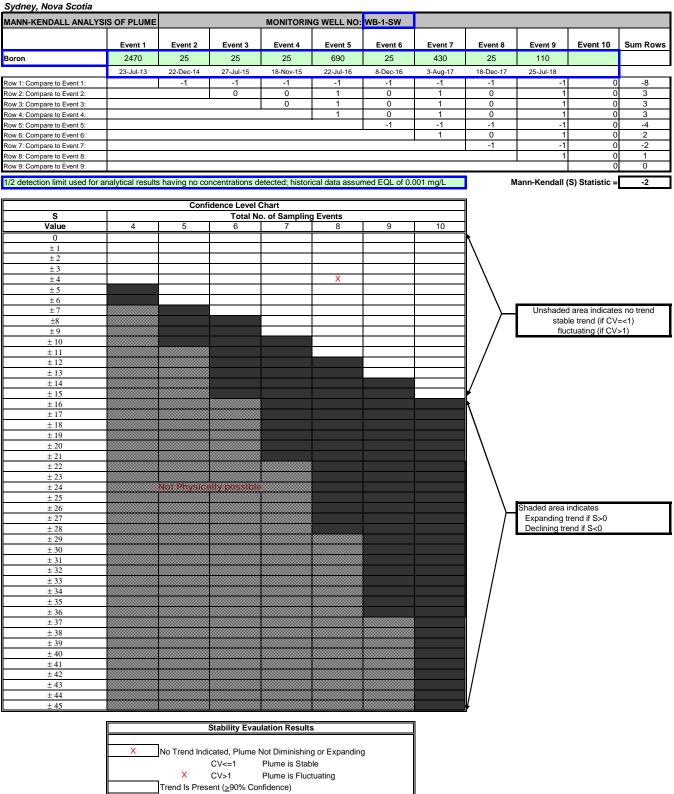
CV>1

S < 0

S > 0

Х

Х

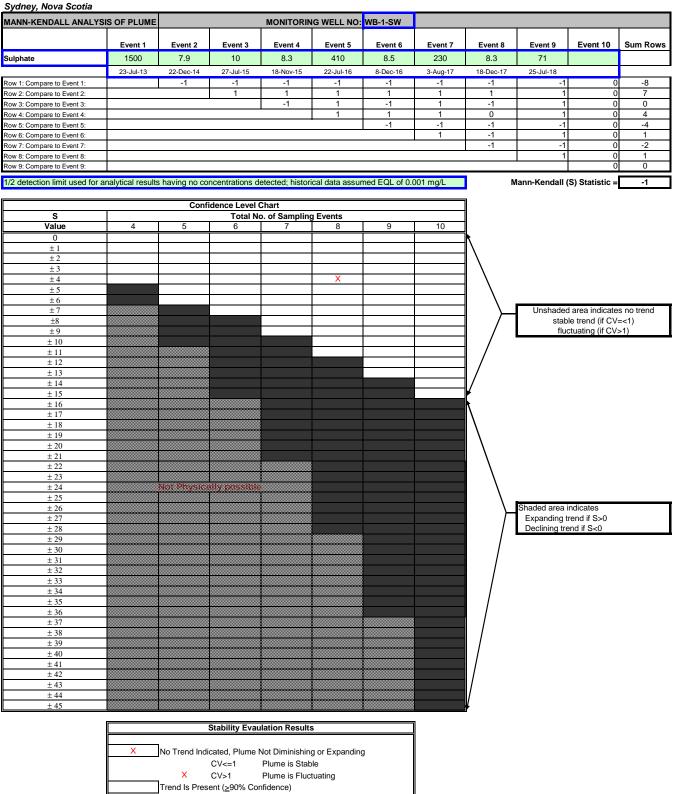

Trend Is Present (>90% Confidence)

Plume is Fluctuating

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

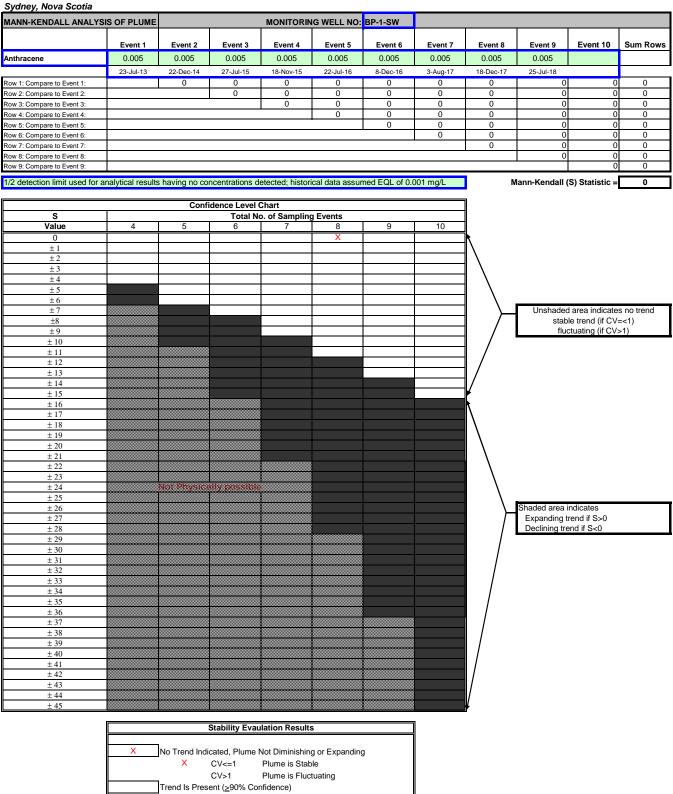

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

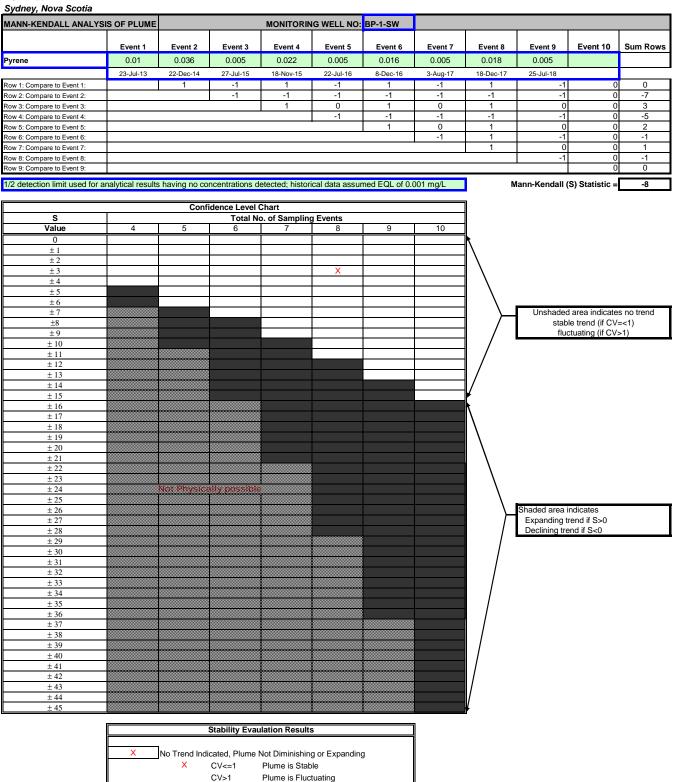

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

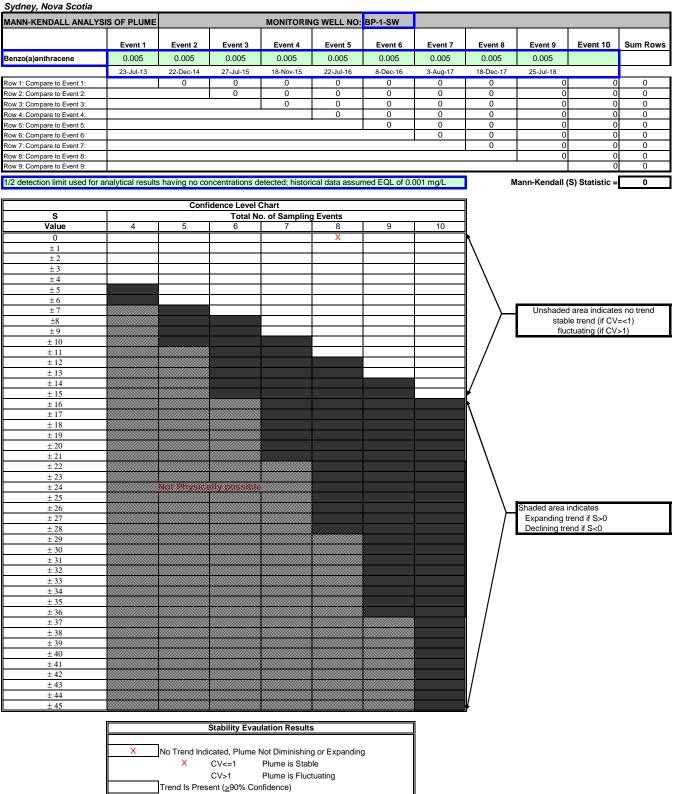

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

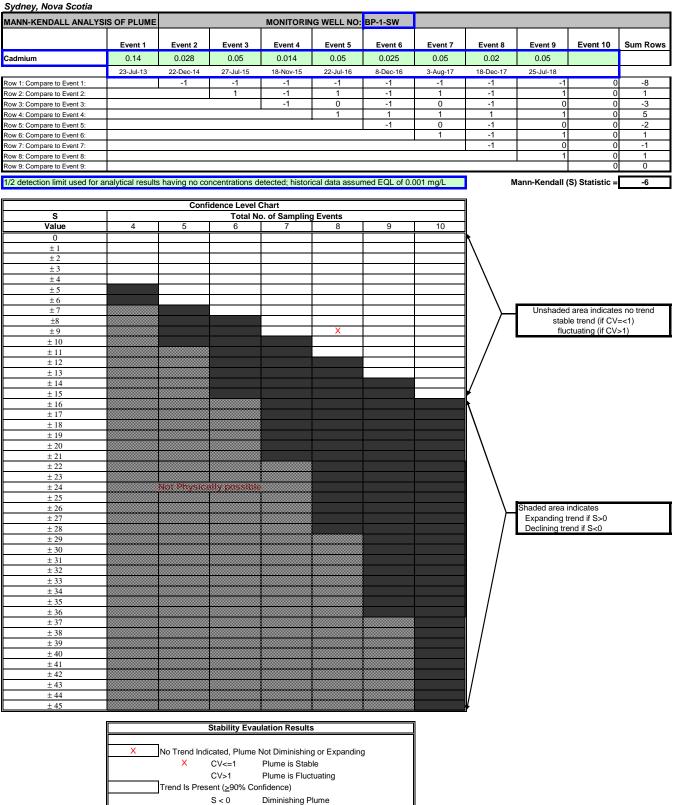

Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

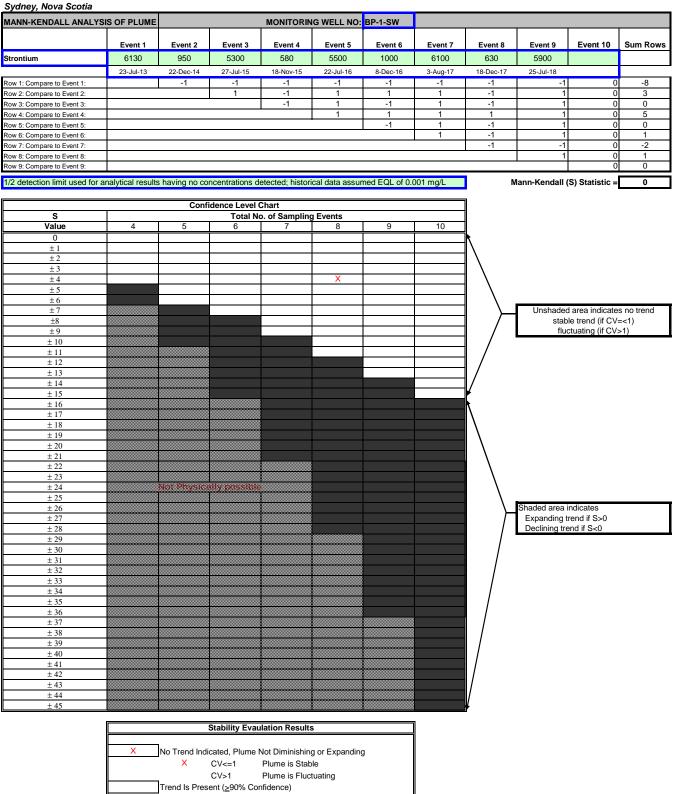
NS Lands


S < 0

S > 0

Diminishing Plume

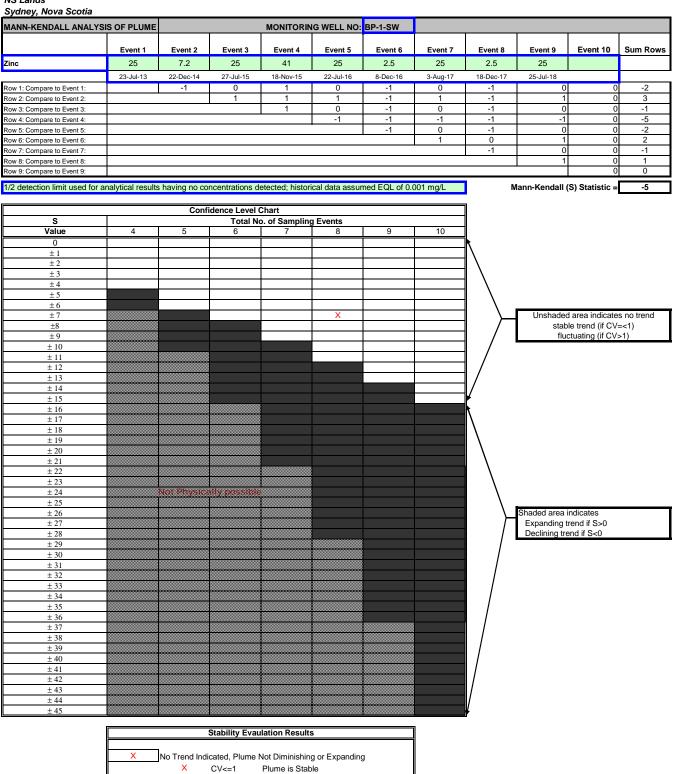
LTMM Surface Water Monitoring


NS Lands

S > 0

LTMM Surface Water Monitoring

NS Lands


S < 0

S > 0

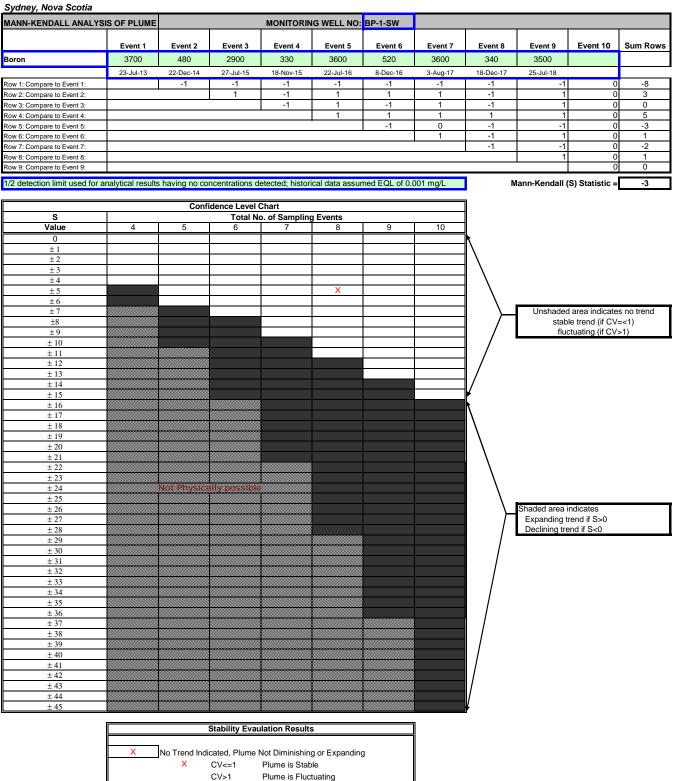
Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

CV>1

S > 0

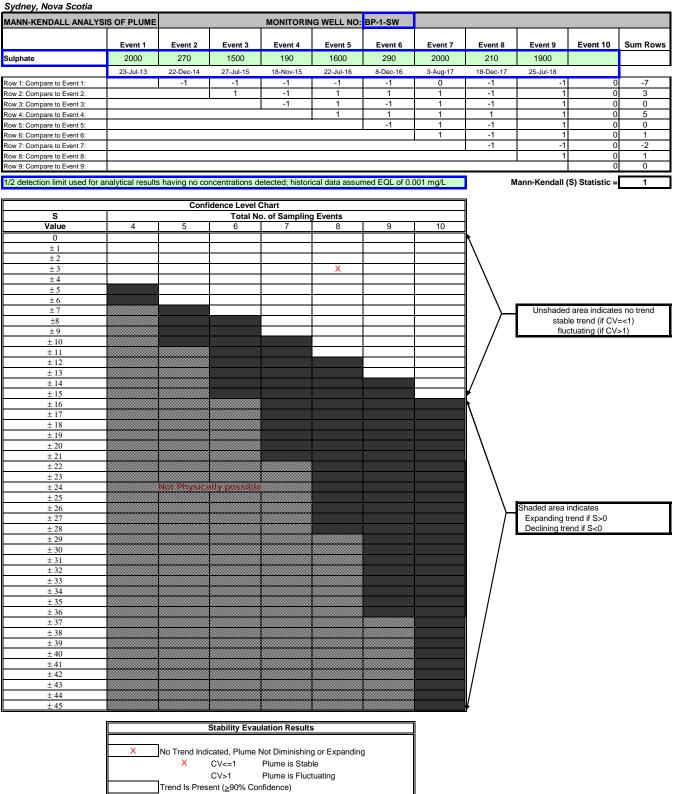

Trend Is Present (>90% Confidence) S < 0

Plume is Fluctuating

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

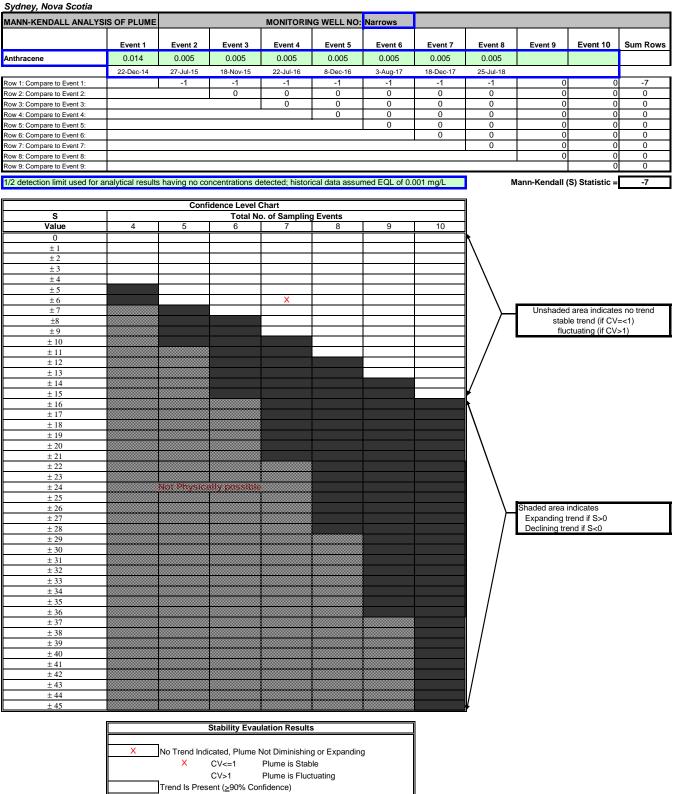

Trend Is Present (≥90% Confidence) S < 0 Diminish

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands


S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	Narrows					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Pyrene	0.03	0.014	0.019	0.005	0.016	0.005	0.018	0.013			
	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18			
Row 1: Compare to Event 1:		-1	-1	-1	-1	-1	-1	-1	0		
Row 2: Compare to Event 2:	ļ		1	-1	1	-1	1	-1	0		
Row 3: Compare to Event 3: Row 4: Compare to Event 4:				-1	-1	-1	-1	-1	0		
Row 4: Compare to Event 4: Row 5: Compare to Event 5:					1	0	1	1 -1	0		
Row 6: Compare to Event 6:						-1	1	-1	0		
Row 6: Compare to Event 6: Row 7: Compare to Event 7:	1						· · ·	-1	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:										0	0
1/2 detection limit used for a	nalytical results	having no cor	ncentrations d	etected; histori	ical data assur	ned EQL of 0.0	001 mg/L	N	lann-Kendall	(S) Statistic =	-9
· · · · · · · · · · · · · · · · · · ·											
		Confi	dence Level (_						
S	A	F		o. of Sampling		0	10				
Value	4	5	6	7	8	9	10	i.			
0 ± 1								I\			
± 1 ± 2								1			
± 3	1			1	1	1	1	1 \			
±4											
± 5											
± 6 + 7				X					Incharte	d oron indiact-	a no troad
± 7 ±8										d area indicate ble trend (if CV:	
±9								/		ctuating (if CV:	
± 10] / '			
±11								. /			
± 12								/			
± 13								/			
$\frac{\pm 14}{\pm 15}$								l /			
± 15 ± 16											
± 17											
± 18											
± 19											
± 20 ± 21											
± 21 ± 22											
± 22 ± 23								1 \			
± 24		Not Physics	lly possible								
± 25									o		
± 26 + 27									Shaded area		
± 27 ± 28									Expanding to Declining tr		
± 28 ± 29									Doolining th		
± 30											
± 31											
± 32											
± 33 ± 34											
± 34 + 35											
± 35								1 /			
± 37								/			
± 38											
± 39											
$\frac{\pm 40}{\pm 41}$								/			
± 41 ± 42								/			
± 43								1/			
± 44								/			
± 45								¥			
	(<u> </u>		Mah Bitter T	letier D			1				
			Stability Evau	lation Result	5						
	X	No Trend Indi	noted Diama	lot Diminish's	a or Evenedia						
	^			Not Diminishin Plume is Stab		J					
			CV<=1 CV>1	Plume is Stat							
		Trend Is Prese			wanny						
	l	I TENU IS FIESE	Sint (<u>≥</u> 30% C01	muence)			1				

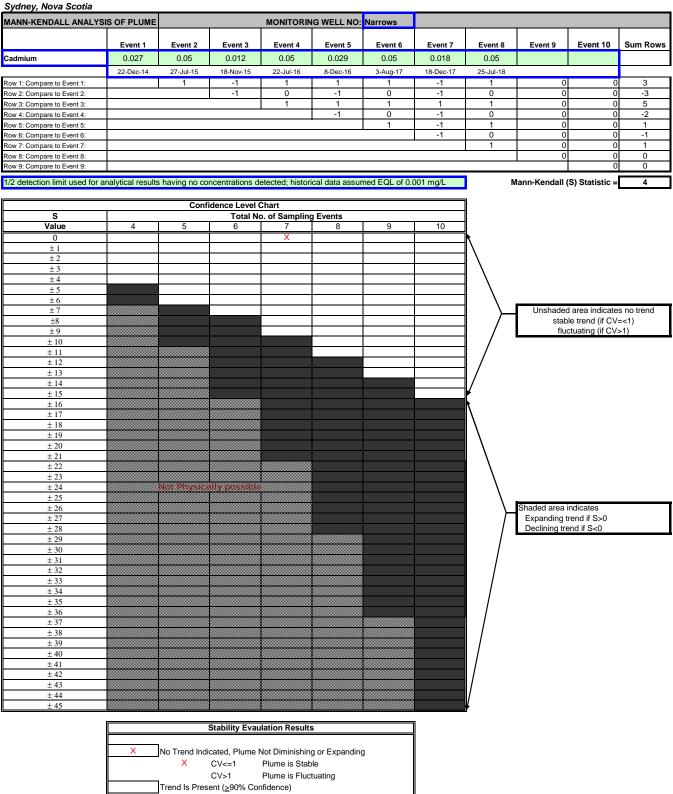
S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	G WELL NO:	Narrows					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzo(a)pyrene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18			
Row 1: Compare to Event 1:		0	0	0	0	0	0	0	0		
Row 2: Compare to Event 2:			0	0	0	0	0	0	0		
Row 3: Compare to Event 3: Row 4: Compare to Event 4:				0	0	0	0	0	0		
Row 4: Compare to Event 4: Row 5: Compare to Event 5:					0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 6: Compare to Event 6: Row 7: Compare to Event 7:							0	0	0		
Row 8: Compare to Event 8:									0	0	0
Row 9: Compare to Event 9:									•	0	0
1/2 detection limit used for an	nalvtical results	s having no co	ncentrations de	etected: histor	ical data assur	med EQL of 0.	001 ma/L	N	lann-Kendall	(S) Statistic =	0
	,			,			<u>-</u>	•		(-,	-
		Confi	dence Level (Chart				1			
S				o. of Sampling]			
Value	4	5	6	7	8	9	10	1			
0				Х				N.			
± 1 + 2								1			
$\frac{\pm 2}{\pm 3}$								\			
± 3 ± 4											
± 5		-	-		1	1	1	1 \			
± 6											
±7										d area indicate	
±8								/		ole trend (if CV:	
± 9 ± 10								/	flu	ctuating (if CV:	>1)
± 10 ± 11								/			
± 11 ± 12								1 /			
± 13							1	1/			
± 14]/			
± 15											
± 16								1			
± 17 ± 18											
± 18 ± 19											
± 19 ± 20											
± 21											
± 22											
± 23		Net Of									
± 24 ± 25		NOL MAYSICE	illy possible								
± 25 ± 26									Shaded area	indicates	
± 20 ± 27									Expanding		
± 28									Declining tr		
± 29											
± 30											
± 31 ± 32											
± 32 ± 33											
± 33											
± 35											
± 36								. /			
± 37											
± 38											
$\frac{\pm 39}{\pm 40}$											
± 40 ± 41								/			
± 41 ± 42								1/			
± 43								/			
± 44								/			
± 45								¥			
			Stability Evau	lation Desult			1				
			Stability Evau	acion Result	5						
	х	No Trend Indi	cated Plumo	Not Diminishin	g or Expanding	r					
		X		Plume is Stat		5					
				Plume is Fluc							
		Trend Is Pres	ent (<u>></u> 90% Cor								
	I						1				


S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

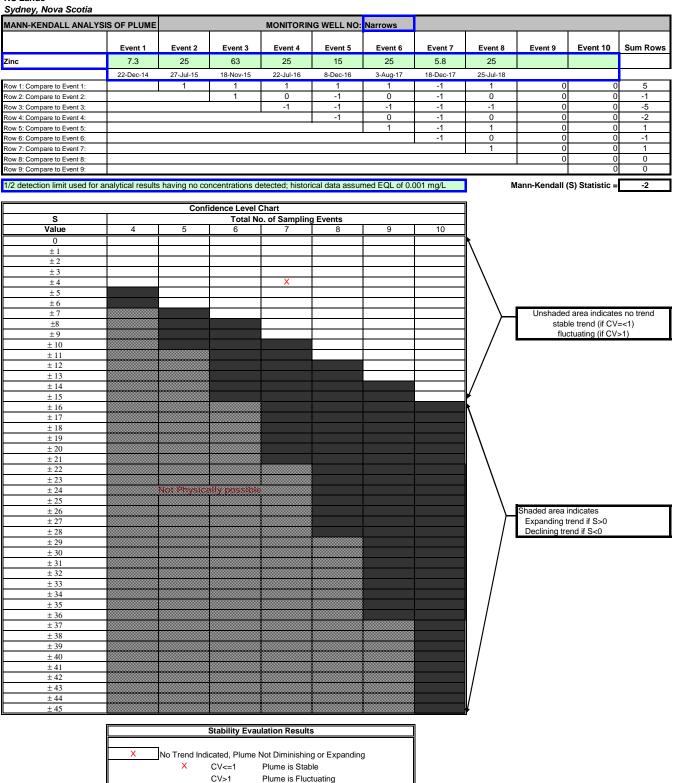
S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	Narrows					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Strontium	610	5400	370	5400	890	6100	450	5000			
	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18			
Row 1: Compare to Event 1: Row 2: Compare to Event 2:		1	-1 -1	1	1 -1	1	-1 -1	1 -1	0	0	
Row 3: Compare to Event 3:			-1	1	-1	1	-1	-1	0	0	
Row 4: Compare to Event 4:					-1	1	-1	-1	0	0	
Row 5: Compare to Event 5:						1	-1	1	0	0	
Row 6: Compare to Event 6:							-1	-1 1	0	0	
Row 7: Compare to Event 7: Row 8: Compare to Event 8:								1	0	0	
Row 9: Compare to Event 9:										0	
1/2 detection limit used for ar	nalvtical results	s having no co	ncentrations d	etected: histori	ical data assur	ned EQL of 0.0)01 ma/L	N	lann-Kendall	(S) Statistic =	3
	,	j i i					J			(-,	
		Confi	dence Level (
S		_		o. of Sampling			40				
Value	4	5	6	7	8	9	10				
0 ± 1								Ν			
± 1 ± 2				Х							
± 3											
± 4											
± 5 ± 6											
± 0 ± 7									Unshade	d area indicate	s no trend
±8										le trend (if CV	
± 9									flu	ctuating (if CV:	>1)
± 10 ± 11											
± 11 ± 12											
±13								/			
± 14								/			
± 15 ± 16											
± 10 ± 17								Ν			
± 18											
± 19											
± 20 ± 21											
± 21 ± 22											
± 23											
± 24		Not Physica	illy possible								
± 25 ± 26									Shaded area	indicates	
± 27									Expanding		
± 28									Declining tr	end if S<0	
± 29											
$\pm 30 \pm 31$											
± 32											
± 33											
± 34 + 35											
± 35 ± 36											
± 37											
± 38											
$\frac{\pm 39}{\pm 40}$											
± 40 ± 41											
± 42								/			
± 43								/			
$\frac{\pm 44}{\pm 45}$											
± 43								r			
			Stability Evau	lation Result	6]				
	X			Not Diminishin		g					
			CV<=1	Plume is Stab							
		Trend Is Pres	CV>1	Plume is Fluc	luating						
		THENU IS PIES	ະາາເ (<u>≥</u> ອບ‰ ບ0I	nuence)			1				


S < 0

S > 0

Diminishing Plume

LTMM Surface Water Monitoring

NS Lands

Trend Is Present (≥90% Confidence) S < 0 Diminish

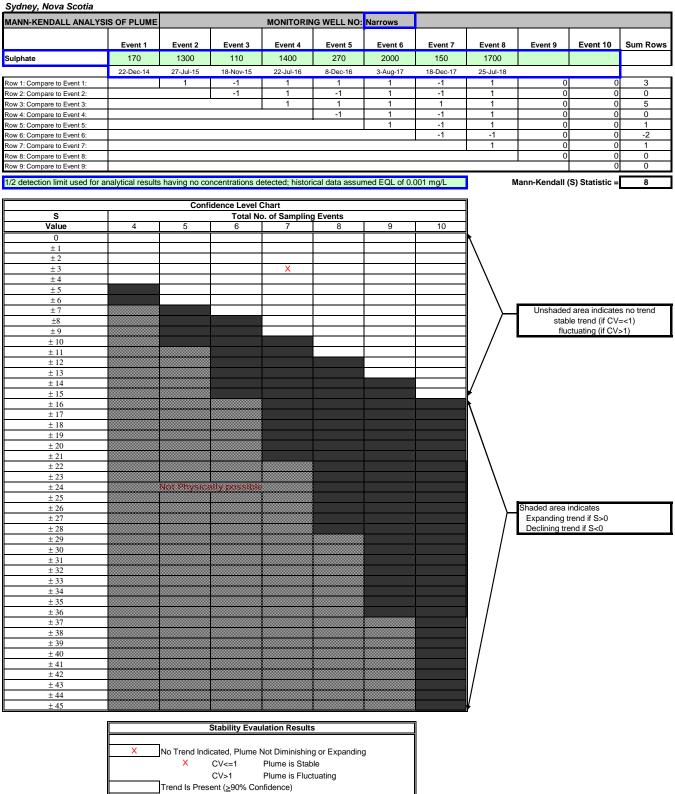
S > 0

Diminishing Plume

LTMM Surface Water Monitoring NS Lands

Sydney, Nova Scotia											
MANN-KENDALL ANALYSI	S OF PLUME			MONITORIN	IG WELL NO:	Narrows					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Boron	300	3100	180	3500	460	3600	210	2800			
	22-Dec-14	27-Jul-15	18-Nov-15	22-Jul-16	8-Dec-16	3-Aug-17	18-Dec-17	25-Jul-18			
Row 1: Compare to Event 1:		1	-1	1	1	1	-1	1	0	0	3
Row 2: Compare to Event 2:			-1	1	-1	1	-1	-1	0		
Row 3: Compare to Event 3:				1	1	1	1	1	0		
Row 4: Compare to Event 4:					-1	1	-1	-1	0		
Row 5: Compare to Event 5:						1	-1 -1	1	0		
Row 6: Compare to Event 6: Row 7: Compare to Event 7:							-1	-1 1	0		
Row 8: Compare to Event 7:									0		
Row 9: Compare to Event 9:										0	
			acontrationa d	ata ata du biata ri	inal data angur		001 mal		lann Kandall	(C) Statiatia	4
1/2 detection limit used for an	anytical results	naving no col	ncentrations d	elected; histor	ical uala assur		JUT HIg/L	IV	ann-renaall	(S) Statistic =	4
		Confi	dence Level (hart				7			
S		COIII		o. of Sampling	Events			1			
Value	4	5	6	7	8	9	10	1			
0								k			
±1											
± 2											
± 3				Х	ļ						
± 4											
± 5 + 6											
± 6 ± 7									Unshade	d area indicate	s no trend
±8)		ble trend (if CV:	
± 9								/		ctuating (if CV:	
± 10								. /			
± 11								/			
± 12								/			
± 13 ± 14								/			
± 14 ± 15								V			
± 15 ± 16											
± 17											
± 18											
± 19											
± 20											
± 21 ± 22											
± 22 ± 23											
± 25 ± 24		Not Physics	lly possible	•							
± 25											
± 26									Shaded area		
± 27									Expanding to		
± 28 + 20									Declining tr	ena li 5<0	
± 29 ± 30											
± 30											
± 32											
± 33											
± 34											
± 35											
$\frac{\pm 36}{\pm 37}$											
± 37 ± 38											
± 39								/			
± 40											
± 41								/			
± 42								/			
± 43								1/			
± 44								V			
± 45								ľ			
			Stability Evan	lation Results	\$		1				
			etability ⊑vau		-						
	Х	No Trend Indi	cated. Plume !	Not Diminishin	a or Expanding	a					
	-			Plume is Stab	• •	5					
				Plume is Fluc							
			ent (<u>></u> 90% Cor								

S < 0


S > 0

Diminishing Plume

MANN-KENDALL PLUME STABILITY ANALYSIS

LTMM Surface Water Monitoring

NS Lands

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	IG WELL NO:	MW1					
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
±4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	IG WELL NO:	MW1					
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	IG WELL NO:	MW1					
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
±4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	IG WELL NO:	MW1					
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
±4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	IG WELL NO:	MW1					
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	IG WELL NO:	MW1					
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	ITORING WELL NO: MW1						
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	ITORING WELL NO: MW1						
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
±4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	ITORING WELL NO: MW1						
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
±4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	ITORING WELL NO: MW1						
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
±4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

MANN-KENDALI	PLUME STABILITY	ANALYSIS
--------------	-----------------	----------

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	ITORING WELL NO: MW1						
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS	SIS OF PLUME			MONITORIN	ITORING WELL NO: MW1						
						Ī					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0		
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall ((S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6 ± 7									Unshadeo	d area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9									flue	ctuating (if CV	>1)
± 10 ± 11											
± 11 ± 12								/			
± 13											
± 14								/			
$\frac{\pm 15}{\pm 16}$											
± 10 ± 17											
± 18											
$\pm 19 \\ \pm 20$											
± 20 ± 21											
± 22											
± 23		Nant Olevenie									
$ \pm 24 \pm 25 $		NUCHIYSIG	nly possible								
± 26									Shaded area	indicates	
± 27									Expanding t		
$ \pm 28 \pm 29 $									Declining tre	end if S <u< td=""><td></td></u<>	
± 29 ± 30											
± 31											
$ \pm 32 \pm 33 $	-										
± 33											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 37 ± 38											
± 39											
± 40								/			
$ \pm 41 \\ \pm 42 $								/			
± 42 ± 43								/			
± 44								/			
± 45								P .			
			Stability Evau	lation Result	s						
		1									
	X			Not Diminishin		g					
		Х	CV<=1	Plume is Stat							
		Trend le Proc	CV>1 ent (<u>></u> 90% Co	Plume is Fluc	ualing						
	 	LICIUIS FIES	on (230% CO	muence)			1				

S < 0

S > 0

Diminishing Plume

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS			MONITORIN	IG WELL NO:	MW1						
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0	0	
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall (S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6									Unabada	l oron indianto	a na trand
± 7 ±8								┨ ┣		d area indicate le trend (if CV	
±9								1 /		ctuating (if CV	
± 10											
± 11								. /			
$\frac{\pm 12}{\pm 13}$						-		/			
± 13 ± 14								1/			
± 15								¥			
± 16								R I			
± 17 ± 18	-										
± 10 ± 19											
± 20											
± 21											
$ \pm 22 \pm 23 $											
± 24		Not Physics	ally possible								
± 25											
$\frac{\pm 26}{\pm 27}$	_								Shaded area i Expanding t		
± 27 ± 28	-								Declining tre		
± 29											
± 30	_							. /			
$ \pm 31 \pm 32 $											
± 32 ± 33											
± 34											
± 35											
$ \pm 36 \pm 37 $								/			
± 38								/			
± 39											
± 40								/			
$\pm 41 \\ \pm 42$								/			
± 42 ± 43								1/			
± 44								/			
± 45		I	1					ľ			
			Stability Evau	lation Result	S						
	X	No Trend Ind	icated Bluma	Not Diminishin	a or Expandia	0					
	^	No Trena Inal X	CV<=1	Plume is Stab		y					
			CV<=1 CV>1	Plume is Fluc							
		Trend Is Pres	ent (<u>></u> 90% Co								
	1	-									

S < 0

S > 0

Diminishing Plume

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS			MONITORIN	IG WELL NO:	MW1						
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0	0	
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall (S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6									Unabada	l oron indianto	a na trand
± 7 ±8								┨ ┣		d area indicate le trend (if CV	
±9								1 /		ctuating (if CV	
± 10											
± 11								. /			
$\frac{\pm 12}{\pm 13}$						-		/			
± 13 ± 14								1/			
± 15								¥			
± 16								R I			
± 17 ± 18	-										
± 10 ± 19											
± 20											
± 21											
$ \pm 22 \pm 23 $											
± 24		Not Physics	ally possible								
± 25											
$\frac{\pm 26}{\pm 27}$	_								Shaded area i Expanding t		
± 27 ± 28	-								Declining tre		
± 29											
± 30	_							. /			
$ \pm 31 \pm 32 $											
± 32 ± 33											
± 34											
± 35											
$ \pm 36 \pm 37 $								/			
± 38								/			
± 39											
± 40								/			
$\pm 41 \\ \pm 42$								/			
± 42 ± 43								1/			
± 44								/			
± 45			1					ľ			
			Stability Evau	lation Result	S						
	X	No Trend Ind	icated Bluma	Not Diminishin	a or Expandia	0					
	^	No Trena Inal X	CV<=1	Plume is Stab		y					
			CV<=1 CV>1	Plume is Fluc							
		Trend Is Pres	ent (<u>></u> 90% Co								
	1	-									

S < 0

S > 0

Diminishing Plume

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS			MONITORIN	IG WELL NO:	MW1						
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0	0	
Row 3: Compare to Event 3:				1	0	0	0	0	0		
Row 4: Compare to Event 4:	-				0	0	0	0	0		
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0		
Row 7: Compare to Event 7:							Ű	0	0		
Row 8: Compare to Event 8:									0		
Row 9: Compare to Event 9:								-		0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall (S) Statistic =	3
		Conf	idence Level	Chart				7			
S		COIII		o. of Sampling	a Events						
Value	4	5	6	7	8	9	10				
0								k			
± 1 ± 2											
± 2 ± 3	#N/A										
± 4											
± 5											
± 6									Unabada	l oron indianto	a na trand
± 7 ±8								┨ ┣		d area indicate le trend (if CV	
±9								1 /		ctuating (if CV	
± 10											
± 11								. /			
$\frac{\pm 12}{\pm 13}$						-		/			
± 13 ± 14								1/			
± 15								¥			
± 16								R I			
± 17 ± 18	-										
± 10 ± 19											
± 20											
± 21											
$ \pm 22 \pm 23 $											
± 24		Not Physics	ally possible								
± 25											
$\frac{\pm 26}{\pm 27}$	_								Shaded area i Expanding t		
± 27 ± 28	-								Declining tre		
± 29											
± 30	_							. /			
$ \pm 31 \pm 32 $											
± 32 ± 33											
± 34											
± 35											
$ \pm 36 \pm 37 $								/			
± 38								/			
± 39											
± 40								/			
$\pm 41 \\ \pm 42$								/			
± 42 ± 43								1/			
± 44								/			
± 45		I	1					ľ			
			Stability Evau	lation Result	S						
	X	No Trend Ind	icated Bluma	Not Diminishin	a or Expandia	0					
	^	No Trend Indi X	CV<=1	Plume is Stab		y					
			CV<=1 CV>1	Plume is Fluc							
		Trend Is Pres	ent (<u>></u> 90% Co								
	1	-									

S < 0

S > 0

Diminishing Plume

NS Lands Sydney, Nova Scotia											
MANN-KENDALL ANALYS			MONITORIN	IG WELL NO:							
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Sum Rows
Benzene	0.001	0.001	0.001	0.002							
Row 1: Compare to Event 1:	10-Jun-05	16-Aug-05 0	24-Aug-05 0	13-Mar-06 1	0	0	0	0	0	0	1
Row 2: Compare to Event 2:		0	0	1	0	0	0	0	0	0	
Row 3: Compare to Event 3:				1	0	0	0	0	0	0	
Row 4: Compare to Event 4:	-				0	0	0	0	0	0	
Row 5: Compare to Event 5: Row 6: Compare to Event 6:						0	0	0	0	0	
Row 7: Compare to Event 7:								0	0	0	
Row 8: Compare to Event 8:									0	0	
Row 9: Compare to Event 9:										0	
1/2 detection limit used for a	analytical results	s having no co	ncentrations d	etected; histor	ical data assu	med EQL of 0.0	001 mg/L	N	lann-Kendall (S) Statistic =	3
		Conf	idence Level	Chart				7			
S				o. of Sampling	g Events						
Value	4	5	6	7	8	9	10				
0								N.			
± 1 ± 2											
± 3	#N/A										
± 4				-	1						
± 5 ± 6											
± 0 ± 7									Unshadeo	area indicate	s no trend
±8									stab	le trend (if CV	=<1)
± 9								/	flue	ctuating (if CV	>1)
± 10 ± 11								/			
± 12								/			
± 13								/			
$\frac{\pm 14}{\pm 15}$								/			
± 15 ± 16											
± 17											
± 18 + 10	_										
$\pm 19 \\ \pm 20$											
± 21											
± 22											
$ \pm 23 \pm 24 $		Not Physica	liv nossible								
± 25											
± 26									Shaded area		
± 27 ± 28									Expanding to Declining tree		
± 20 ± 29									booming at		
± 30								/			
$ \pm 31 \pm 32 $											
± 32 ± 33											
± 34											
± 35											
$\frac{\pm 36}{\pm 37}$								/			
± 38											
± 39								/			
$\pm 40 \\ \pm 41$								/			
± 41 ± 42								/			
± 43								/			
$\frac{\pm 44}{\pm 45}$								V			
± 4J		•	•	<u> </u>	• <u> </u>	<u> </u>		Ľ			
			Stability Evau	lation Result	S						
					_						
	Х	No Trend Indi X	cated, Plume		•	g					
		^	CV<=1 CV>1	Plume is Stat Plume is Fluc							
		Trend Is Pres	ent (<u>></u> 90% Co								
	I			,			1				

Diminishing Plume Expanding Plume

S < 0 S > 0